login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A128249
T(n,k) is the number of unlabeled acyclic single-source automata with n transient states on a (k+1)-letter input alphabet.
0
1, 3, 1, 16, 7, 1, 127, 139, 15, 1, 1363, 5711, 1000, 31, 1, 18628, 408354, 189035, 6631, 63, 1, 311250, 45605881, 79278446, 5470431, 42196, 127, 1, 6173791, 7390305396, 63263422646, 12703473581, 147606627, 262459, 255, 1, 142190703, 1647470410551
OFFSET
1,2
COMMENTS
Table with rows n=1,2,... and columns k=1,2,3,... is read along antidiagonals.
LINKS
Manosij Ghosh Dastidar and Michael Wallner, Asymptotics of relaxed k-ary trees, arXiv:2404.08415 [math.CO], 2024. See p. 1.4.
MAPLE
T := proc(n, k) local kn, A, i, j ; kn := k*n ; A := matrix(kn, kn) ; for i from 1 to kn do for j from 1 to kn do A[i, j] := abs(combinat[stirling1](floor((i-1)/k)+2, floor((i-1)/k)+1+i-j)) ; od ; od ; linalg[det](A) ; end: for d from 1 to 9 do for n from d to 1 by -1 do k := d+1-n ; printf("%d, ", T(n, k)) ; od ; od;
MATHEMATICA
t[n_, k_] := Module[{kn, a, i, j}, kn = k*n; For[i = 1, i <= kn, i++, For[j = 1, j <= kn, j++, a[i, j] = Abs[StirlingS1[Floor[(i-1)/k]+2, Max[0, Floor[(i-1)/k]+1+i-j]]]]]; Det[Array[a, {kn, kn}]]]; Table[t[n-k, k], {n, 1, 10}, {k, 1, n-1}] // Flatten (* Jean-François Alcover, Jan 10 2014, translated from Maple *)
CROSSREFS
Sequence in context: A143565 A143018 A102012 * A071211 A222029 A038675
KEYWORD
nonn,tabl
AUTHOR
R. J. Mathar, May 09 2007
STATUS
approved