login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A275080
Triangle g(n,m) by rows: the number of m-compositions of Carlitz type of n without zero rows.
0
1, 0, 1, 0, 1, 3, 0, 3, 12, 13, 0, 4, 45, 108, 75, 0, 7, 148, 672, 1056, 541, 0, 14, 477, 3622, 10028, 11520, 4683, 0, 23, 1502, 18174, 79508, 155840, 140256, 47293, 0, 39, 4678, 87474, 570521, 1705915, 2566554, 1894032, 545835, 0, 71, 14508, 410379, 3850376, 16529925, 37084794, 45082170, 28159872, 7087261, 0, 124, 44817, 1894116, 24966124, 148188201, 465922722, 831175513, 845735016, 457657776, 102247563
OFFSET
0,6
LINKS
E. Munarini, M. Poneti, and S. Rinaldi, Matrix compositions, JIS 12 (2009) 09.4.8, Table 4.
EXAMPLE
1 ;
0 1 ;
0 1 3 ;
0 3 12 13 ;
0 4 45 108 75;
0 7 148 672 1056 541 ;
0 14 477 3622 10028 11520 4683 ;
0 23 1502 18174 79508 155840 140256 47293;
0 39 4678 87474 570521 1705915 2566554 1894032 545835;
MAPLE
z := proc(n, m)
kmax := n+1 ;
add((-1)^k*(1-(1-x^k)^m)/(1-x^k)^m, k=1..kmax) ;
1/(1+%) ;
coeftayl(%, x=0, n) ;
end proc:
g := proc(n, m)
add(binomial(m, k)*(-1)^(m-k)*z(n, k), k=0..m) ;
end proc:
seq(seq(g(n, m), m=0..n), n=0..12) ;
MATHEMATICA
z[n_, m_] := Module[{kmax, s}, kmax = n+1; s = Sum[(-1)^k*(1-(1-x^k)^m)/ (1-x^k)^m, {k, 1, kmax}]; SeriesCoefficient[1/(1+s), {x, 0, n}]];
g[n_, m_] := Sum[Binomial[m, k]*(-1)^(m-k)*z[n, k], {k, 0, m}];
Table[Table[g[n, m], {m, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Oct 28 2023, after R. J. Mathar's program *)
CROSSREFS
Cf. A003242 (column m=1).
Main diagonal gives A000670.
Sequence in context: A157521 A176005 A211963 * A128252 A230675 A327673
KEYWORD
nonn,tabl
AUTHOR
R. J. Mathar, Jul 15 2016
STATUS
approved