The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A275078 Triangle read by rows in which row n lists the lexicographic composition of the elements of symmetric group S_n. 0
 1, 2, 1, 2, 1, 3, 3, 4, 1, 2, 2, 4, 1, 5, 3, 5, 4, 2, 6, 1, 3, 4, 7, 5, 1, 3, 2, 6, 8, 1, 2, 3, 4, 7, 6, 5, 6, 9, 2, 1, 7, 8, 5, 4, 3, 2, 8, 9, 4, 6, 7, 10, 5, 1, 3, 5, 1, 6, 10, 8, 11, 9, 2, 7, 3, 4, 7, 1, 9, 5, 6, 2, 12, 4, 8, 11, 10, 3 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS EXAMPLE Triangle begins: 1 2  1 2  1  3 3  4  1  2 2  4  1  5  3 5  4  2  6  1  3 4  7  5  1  3  2  6 8  1  2  3  4  7  6  5 6  9  2  1  7  8  5  4  3 2  8  9  4  6  7  10 5  1  3 5  1  6  10 8  11 9  2  7  3  4 7  1  9  5  6  2  12 4  8  11 10  3 For the third row, the 6 permutations of 123 in lexical order are 123, 132, 213, 231, 312, and 321. Consecutively applying each permutation to 123 results in the sequence: 123, 132, 312, 123, 312, 213. The final element with commas inserted gives us the row: 2,1,3. PROG (Python) from itertools import count, permutations for size in count(1):     row = tuple(range(1, size + 1))     for p in permutations(range(size)):         row = tuple(row[i] for i in p)     print(row) CROSSREFS Sequence in context: A318362 A213237 A029334 * A286478 A340756 A030273 Adjacent sequences:  A275075 A275076 A275077 * A275079 A275080 A275081 KEYWORD nonn,tabl AUTHOR David Nickerson, Jul 15 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 16 14:16 EDT 2021. Contains 345057 sequences. (Running on oeis4.)