login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A275078 Triangle read by rows in which row n lists the lexicographic composition of the elements of symmetric group S_n. 0
1, 2, 1, 2, 1, 3, 3, 4, 1, 2, 2, 4, 1, 5, 3, 5, 4, 2, 6, 1, 3, 4, 7, 5, 1, 3, 2, 6, 8, 1, 2, 3, 4, 7, 6, 5, 6, 9, 2, 1, 7, 8, 5, 4, 3, 2, 8, 9, 4, 6, 7, 10, 5, 1, 3, 5, 1, 6, 10, 8, 11, 9, 2, 7, 3, 4, 7, 1, 9, 5, 6, 2, 12, 4, 8, 11, 10, 3 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Table of n, a(n) for n=1..78.

EXAMPLE

Triangle begins:

1

2  1

2  1  3

3  4  1  2

2  4  1  5  3

5  4  2  6  1  3

4  7  5  1  3  2  6

8  1  2  3  4  7  6  5

6  9  2  1  7  8  5  4  3

2  8  9  4  6  7  10 5  1  3

5  1  6  10 8  11 9  2  7  3  4

7  1  9  5  6  2  12 4  8  11 10  3

For the third row, the 6 permutations of 123 in lexical order are 123, 132, 213, 231, 312, and 321. Consecutively applying each permutation to 123 results in the sequence: 123, 132, 312, 123, 312, 213. The final element with commas inserted gives us the row: 2,1,3.

PROG

(Python)

from itertools import count, permutations

for size in count(1):

    row = tuple(range(1, size + 1))

    for p in permutations(range(size)):

        row = tuple(row[i] for i in p)

    print(row)

CROSSREFS

Sequence in context: A318362 A213237 A029334 * A286478 A340756 A030273

Adjacent sequences:  A275075 A275076 A275077 * A275079 A275080 A275081

KEYWORD

nonn,tabl

AUTHOR

David Nickerson, Jul 15 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 16 14:16 EDT 2021. Contains 345057 sequences. (Running on oeis4.)