login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157521
Triangle T(n, k) = n! * binomial(n, k)*( psi(n-k+1) - psi(k+1) ), read by rows.
2
0, 1, -1, 3, 0, -3, 11, 9, -9, -11, 50, 80, 0, -80, -50, 274, 650, 400, -400, -650, -274, 1764, 5544, 6300, 0, -6300, -5544, -1764, 13068, 51156, 82908, 44100, -44100, -82908, -51156, -13068, 109584, 513792, 1072512, 1016064, 0, -1016064, -1072512, -513792, -109584
OFFSET
0,4
FORMULA
T(n, k) = n! * (d/dk) binomial(n, k).
Sum_{k=0..n} T(n, k) = 0.
From G. C. Greubel, Jan 13 2022: (Start)
T(n, k) = n! * binomial(n, k)*( psi(n-k+1) - psi(k+1) ), psi = digamma function.
T(2*n, n) = 0.
T(n, n-k) = - T(n, k), k <= floor(n/2).
T(n, 0) = A000254(n). (End)
EXAMPLE
Triangle begins as:
0;
1, -1;
3, 0, -3;
11, 9, -9, -11;
50, 80, 0, -80, -50;
274, 650, 400, -400, -650, -274;
1764, 5544, 6300, 0, -6300, -5544, -1764;
13068, 51156, 82908, 44100, -44100, -82908, -51156, -13068;
109584, 513792, 1072512, 1016064, 0, -1016064, -1072512, -513792, -109584;
MATHEMATICA
T[n_, k_]:= n!*Binomial[n, k]*(PolyGamma[0, n-k+1] - PolyGamma[0, k+1]);
Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Jan 13 2022 *)
PROG
(Magma) [Round(Factorial(n)*Binomial(n, k)*(Psi(n-k+1) - Psi(k+1))): k in [0..n], n in [0..10]]; // G. C. Greubel, Jan 13 2022
(Sage) flatten([[factorial(n)*binomial(n, k)*(psi(n-k+1) - psi(k+1)) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Jan 13 2022
CROSSREFS
Sequence in context: A191619 A327245 A157525 * A176005 A211963 A275080
KEYWORD
sign,tabl
AUTHOR
Roger L. Bagula, Mar 02 2009
EXTENSIONS
Edited by G. C. Greubel, Jan 13 2022
STATUS
approved