login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157525
Triangle T(n, k) = n! * (Harmonic number(n-k) - Harmonic number(k)), read by rows.
2
0, 1, -1, 3, 0, -3, 11, 3, -3, -11, 50, 20, 0, -20, -50, 274, 130, 40, -40, -130, -274, 1764, 924, 420, 0, -420, -924, -1764, 13068, 7308, 3948, 1260, -1260, -3948, -7308, -13068, 109584, 64224, 38304, 18144, 0, -18144, -38304, -64224, -109584, 1026576, 623376, 396576, 223776, 72576, -72576, -223776, -396576, -623376, -1026576
OFFSET
0,4
FORMULA
T(n, k) = n! * (d/dk) log( binomial(n, k) ).
T(n, 0) = A000254(n).
Sum_{k=0..n} T(n, k) = 0.
From G. C. Greubel, Jan 23 2022: (Start)
T(n, k) = n! * (psi(n-k+1) - psi(k+1)), where psi(x) = digamma(x).
T(n, k) = n! * (H(n-k) - H(k)), where H(n) = harmonic number(n).
T(n, n-k) = -T(n, k).
T(2*n, n) = 0. (End)
EXAMPLE
Triangle begins as:
0;
1, -1;
3, 0, -3;
11, 3, -3, -11;
50, 20, 0, -20, -50;
274, 130, 40, -40, -130, -274;
1764, 924, 420, 0, -420, -924, -1764;
13068, 7308, 3948, 1260, -1260, -3948, -7308, -13068;
109584, 64224, 38304, 18144, 0, -18144, -38304, -64224, -109584;
MATHEMATICA
T[n_, k_]:= n!*(PolyGamma[0, n-k+1] - PolyGamma[0, k+1]);
Table[T[n, k], {n, 0, 15}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Jan 23 2022 *)
PROG
(Magma)
T:= func< n, k | Round(Factorial(n)*(Psi(n-k+1) - Psi(k+1))) >;
[T(n, k): k in [0..n], n in [0..15]]; // G. C. Greubel, Jan 23 2022
(Sage)
def T(n, k): return factorial(n)*(harmonic_number(n-k) - harmonic_number(k))
flatten([[T(n, k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Jan 23 2022
CROSSREFS
Sequence in context: A212036 A191619 A327245 * A157521 A176005 A211963
KEYWORD
sign,tabl
AUTHOR
Roger L. Bagula, Mar 02 2009
EXTENSIONS
Edited by G. C. Greubel, Jan 23 2022
STATUS
approved