login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157526
Triangular sequence from coefficients of the polynomial recursion: p(x,n)=Sum[Binomial[n, m]*p[x, m]*p[x, n - m - 1], {m, 0, n - 1}].
0
1, 1, 1, 3, 3, 15, 18, 3, 105, 150, 45, 945, 1575, 675, 45, 10395, 19845, 11025, 1575, 135135, 291060, 198450, 44100, 1575, 2027025, 4864860, 3929310, 1190700, 99225, 34459425, 91216125, 85135050, 32744250, 4465125, 99225, 654729075, 1895268375
OFFSET
0,4
COMMENTS
Row sums are:
{1, 2, 6, 36, 300, 3240, 42840, 670320, 12111120, 248119200, 5683154400,...}.
The first column is A001147:
{1, 1, 3, 15, 105, 945, 10395, 135135, 2027025, 34459425, 654729075,...}.
FORMULA
p(x,n)=Sum[Binomial[n, m]*p[x, m]*p[x, n - m - 1], {m, 0, n - 1}].
EXAMPLE
{1},
{1, 1},
{3, 3},
{15, 18, 3},
{105, 150, 45},
{945, 1575, 675, 45},
{10395, 19845, 11025, 1575},
{135135, 291060, 198450, 44100, 1575},
{2027025, 4864860, 3929310, 1190700, 99225},
{34459425, 91216125, 85135050, 32744250, 4465125, 99225},
{654729075, 1895268375, 2006754750, 936485550, 180093375, 9823275}
MATHEMATICA
p[x, 0] = 1;
p[x, 1] = x + 1;
p[x_, n_] := Sum[Binomial[n, m]*p[x, m]*p[x, n - m - 1], {m, 0, n - 1}];
Table[ExpandAll[p[x, n]], {n, 0, 10}];
Table[CoefficientList[ExpandAll[p[x, n]], x], {n, 0, 10}];
Flatten[%]
CROSSREFS
KEYWORD
nonn,tabl,uned
AUTHOR
Roger L. Bagula, Mar 02 2009
STATUS
approved