OFFSET
1,3
COMMENTS
Dickson's conjecture implies that a(n) > 0 for all n. - Charles R Greathouse IV, Oct 11 2011
From David A. Corneth, Jul 30 2020: (Start)
We can restrict the search using the Chinese Remainder Theorem as follows: there are 4 possible residues mod 7 for a term; 0, 1, 2 and 4. There are 4 possible residues mod 19 for a term; 0, 9, 14 and 18.
Combining this we can find all 4*4 = 16 possible residues mod (19*7) = mod 133. These residues are 0, 9, 14, 18, 28, 37, 56, 57, 71, 85, 95, 109, 113, 114, 123, 128.
I did this for the primes up to 41, except 31, giving 13837825 numbers to check per 9814524629910 such that on average 1 in about 7*10^5 numbers had to be checked. (End)
EXAMPLE
a(5)=15 is the least positive integer which, when added to 2^1, 2^2, 2^3, 2^4, 2^5, yields all primes: 17, 19, 23, 31, 47.
MATHEMATICA
p[n_] := Table[2^i, {i, 1, n}]; f[k_, n_] := MemberQ[PrimeQ[k + p[n]], False]; r = {}; For[n = 1, n <= 9, n++, k = 1; While[f[k, n], k = k + 1]; r = Append[r, k]]; r
PROG
(PARI) is(k, n) = for(i=1, n, if(!isprime(k+2^i), return(0))); 1;
a(n) = {my(s=2); forprime(p=3, n, if(znorder(Mod(2, p))==(p-1), s*=p)); forstep(k=s/2, oo, s, if(is(k, n), return(k))); } \\ Jinyuan Wang, Jul 30 2020
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Joseph L. Pe, Sep 05 2005
EXTENSIONS
a(10) from T. D. Noe, Sep 06 2005
a(11) from Don Reble, Sep 17 2005
a(14)-a(16) from Bert Dobbelaere, Apr 24 2021
STATUS
approved