OFFSET
0,3
COMMENTS
A Delannoy path of length n is a path from (0,0) to (n,n), consisting of steps E=(1,0), N=(0,1) and D=(1,1).
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..200
R. A. Sulanke, Objects counted by the central Delannoy numbers, J. Integer Seq. 6 (2003), no. 1, Article 03.1.5.
FORMULA
a(n) = Sum_{k=0..n} k*A110098(n,k).
G.f.: z*R^3/(1 - z*R^2)^2, where R = 1 + z*R + z*R^2 is the g.f. of the large Schroeder numbers (A006318).
Recurrence: n*a(n) = 3*(4*n-3)*a(n-1) - 19*(2*n-3)*a(n-2) + 3*(4*n-9) * a(n-3) - (n-3)*a(n-4). - Vaclav Kotesovec, Oct 24 2012
a(n) ~ 1/8*(2+sqrt(2))*(3+2*sqrt(2))^n. - Vaclav Kotesovec, Oct 24 2012
EXAMPLE
a(2) = 8 because in the 13 (=A001850(2)) Delannoy paths of length 2, namely DD, DN(E), DEN, N(E)D, N(E)N(E), N(E)EN, ND(E), NNE(E), END, ENN(E), ENEN, EDN and EENN, one has altogether 8 return steps to the line y = x from the line y = x+1 (shown between parentheses).
MAPLE
R:=(1-z-sqrt(1-6*z+z^2))/2/z: G:=z*R^3/(1-z*R^2)^2: Gser:=series(G, z=0, 30): 0, seq(coeff(Gser, z^n), n=1..24);
MATHEMATICA
CoefficientList[Series[x*((1-x-Sqrt[1-6*x+x^2])/2/x)^3/(1-x*((1-x-Sqrt[ 1-6*x+x^2])/2/x)^2)^2, {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 24 2012 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Jul 11 2005
STATUS
approved