login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A110100
a(n) is the number of 2-regular 3-hypergraphs on 3n labeled vertices. (In a 3-hypergraph, each hyper-edge is a proper 3-set; 2-regular implies that each vertex is in exactly 2 hyperedges.)
5
1, 0, 75, 122220, 757275750, 12713292692100, 474415445827323000, 34461884930947363890000, 4431555785100983345799993000, 939388724430508823324694340500000
OFFSET
0,3
COMMENTS
P-recursive
LINKS
Denis S. Krotov, Konstantin V. Vorob'ev, On unbalanced Boolean functions attaining the bound 2n/3-1 on the correlation immunity, arXiv:1812.02166 [math.CO], 2018.
Marni Mishna, Maple worksheet
FORMULA
Recurrence: {a(0) = 1, a(1) = 0, (361631520*n + 1358261784*n^2 + 2841968052*n^3 + 3241507005*n^5 + 3725654130*n^4 + 1922779782*n^6 + 781684101*n^7 + 214347870*n^8 + 37889775*n^9 + 3897234*n^10 + 177147*n^11 + 39916800)*a(n) + (870112800*n + 1655958600*n^2 + 1805971896*n^3 + 561697416*n^5 + 1244162430*n^4 + 166255740*n^6 + 31125384*n^7 + 3346110*n^8 + 157464*n^9 + 199584000)*a(n + 1) + (70976400*n + 86362056*n^2 + 57212568*n^3 + 5161320*n^5 + 22352760*n^4 + 653184*n^6 + 34992*n^7 + 24393600)*a(n + 2) + (-468192*n-411840-198432*n^2-37152*n^3-2592*n^4)*a(n + 3) + 64*a(n + 4), a(2) = 75, a(3) = 122220}.
Differential equation satisfied by generating series A(t)=sum a(n) t^(3n)/(3n)!: {F(0) = 1, 16*t^5*(-2 + t^3)^3*(d^2/dt^2)F(t) + 8*t*(t^9-20*t^3 + 8)*(-2 + t^3)^2*(d/dt)F(t) + t^6*(t^3 + 10)*(t^3-4)*(-2 + t^3)^2*F(t)}.
a(n) ~ 3^(4*n+1/2) * n^(4*n) / (2^n * exp(4*n+1)). - Vaclav Kotesovec, Mar 11 2014
EXAMPLE
One of the 75 2-regular 3-hypergraphs on 6 vertices: {1,2,3} {4,5,6} {1,2,4} {3,5,6}.
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Marni Mishna, Jul 11 2005
EXTENSIONS
Replaced broken link, Vaclav Kotesovec, Mar 11 2014
STATUS
approved