login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A301468 a(n) = Sum_{k>=0} binomial(k^4, n)/2^(k+1). 2
1, 75, 272880, 4681655040, 221478589107480, 22313622005672849712, 4108665216956980742226192, 1249503956658157724969373808320, 583952821303314451291898006535866460, 397372225886096887788939487944785734626120, 377577476850495509525002042506806447493291890064 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

In general, for m > 2, Sum_{k>=0} binomial(k^m, n) / 2^(k+1) is asymptotic to m^(m*n + 1/2) * n^((m-1)*n) / (2*exp((m-1)*n) * (log(2))^(m*n + 1)).

LINKS

Table of n, a(n) for n=0..10.

FORMULA

a(n) ~ 2^(8*n) * n^(3*n) / (exp(3*n) * (log(2))^(4*n+1)).

MATHEMATICA

Table[Sum[Binomial[k^4, n]/2^(k+1), {k, 0, Infinity}], {n, 0, 12}]

Table[Sum[StirlingS1[n, j] * HurwitzLerchPhi[1/2, -4*j, 0]/2, {j, 0, n}] / n!, {n, 0, 12}]

CROSSREFS

Cf. A173217 (m=2), A301466 (m=3), A301310.

Sequence in context: A085404 A110100 A003745 * A068942 A116234 A065669

Adjacent sequences:  A301465 A301466 A301467 * A301469 A301470 A301471

KEYWORD

nonn

AUTHOR

Vaclav Kotesovec, Mar 21 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 7 20:36 EDT 2021. Contains 343652 sequences. (Running on oeis4.)