OFFSET
0,2
COMMENTS
In general, for m > 2, Sum_{k>=0} binomial(k^m, n) / 2^(k+1) is asymptotic to m^(m*n + 1/2) * n^((m-1)*n) / (2*exp((m-1)*n) * (log(2))^(m*n + 1)).
FORMULA
a(n) ~ 2^(8*n) * n^(3*n) / (exp(3*n) * (log(2))^(4*n+1)).
MATHEMATICA
Table[Sum[Binomial[k^4, n]/2^(k+1), {k, 0, Infinity}], {n, 0, 12}]
Table[Sum[StirlingS1[n, j] * HurwitzLerchPhi[1/2, -4*j, 0]/2, {j, 0, n}] / n!, {n, 0, 12}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Mar 21 2018
STATUS
approved