login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A301467 Number of enriched r-trees of size n with no empty subtrees. 25
1, 2, 4, 8, 20, 48, 136, 360, 1040, 2944, 8704, 25280, 76320, 226720, 692992, 2096640, 6470016, 19799936, 61713152, 190683520, 598033152, 1863995392, 5879859200, 18438913536, 58464724992, 184356152832, 586898946048, 1859875518464, 5941384080384, 18901502482432 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

An enriched r-tree of size n > 0 with no empty subtrees is either a single node of size n, or a finite nonempty sequence of enriched r-trees with no empty subtrees and with weakly decreasing sizes summing to n - 1.

LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..1910

FORMULA

O.g.f.: x^2/(1 - x) + x Product_{i > 0} 1/(1 - a(i) x^i).

EXAMPLE

The a(4) = 8 enriched r-trees with no empty subtrees: 4, (3), (21), ((2)), (111), ((11)), ((1)1), (((1))).

The a(5) = 20 enriched r-trees with no empty subtrees:

  5,

  (4), ((3)), ((21)), (((2))), ((111)), (((11))), (((1)1)), ((((1)))),

  (31), (22), (2(1)), ((2)1), ((1)2), ((11)1), ((1)(1)), (((1))1),

  (211), ((1)11),

  (1111).

MAPLE

b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,

      add(b(n-i*j, i-1)* a(i)^j, j=0..n/i)))

    end:

a:= n-> `if`(n<2, n, 1+b(n-1$2)):

seq(a(n), n=1..30);  # Alois P. Heinz, Jun 21 2018

MATHEMATICA

pert[n_]:=pert[n]=If[n===1, 1, 1+Sum[Times@@pert/@y, {y, IntegerPartitions[n-1]}]];

Array[pert, 30]

(* Second program: *)

b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0,

     Sum[b[n - i*j, i - 1] a[i]^j, {j, 0, n/i}]]];

a[n_] := a[n] = If[n < 2, n, 1 + b[n-1, n-1]];

Array[a, 30] (* Jean-Fran├žois Alcover, May 09 2021, after Alois P. Heinz *)

PROG

(PARI) seq(n)={my(v=vector(n)); v[1]=1; for(n=2, n, v[n] = 1 + polcoef(1/prod(k=1, n-1, 1 - v[k]*x^k + O(x^n)), n-1)); v} \\ Andrew Howroyd, Aug 26 2018

CROSSREFS

Cf. A000081, A004111, A032305, A055277, A093637, A127524, A196545, A289501, A300660, A301342-A301345, A301364-A301368, A301422, A301462, A301469, A301470.

Sequence in context: A056952 A225585 A121703 * A275070 A115219 A078160

Adjacent sequences:  A301464 A301465 A301466 * A301468 A301469 A301470

KEYWORD

nonn,changed

AUTHOR

Gus Wiseman, Mar 21 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 16 21:28 EDT 2021. Contains 343951 sequences. (Running on oeis4.)