login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A301462 Number of enriched r-trees of size n. 27
1, 2, 3, 8, 23, 77, 254, 921, 3249, 12133, 44937, 172329, 654895, 2565963, 9956885, 39536964, 156047622, 626262315, 2499486155, 10129445626, 40810378668, 166475139700, 676304156461, 2775117950448, 11342074888693, 46785595997544, 192244951610575, 796245213910406 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

An enriched r-tree of size n > 0 is either a single node of size n, or a finite sequence of enriched r-trees with weakly decreasing sizes summing to n - 1.

These are different from the R-trees of data science and the enriched R-trees of Bousquet-Mélou and Courtiel.

LINKS

Andrew Howroyd, Table of n, a(n) for n = 0..500

FORMULA

O.g.f.: 1/(1 - x) + x Product_{i > 0} 1/(1 - a(i) x^i).

EXAMPLE

The a(3) = 8 enriched r-trees: 3, (2), ((1)), ((())), (11), (1()), (()1), (()()).

MATHEMATICA

ert[n_]:=ert[n]=1+Sum[Times@@ert/@y, {y, IntegerPartitions[n-1]}];

Array[ert, 30]

PROG

(PARI) seq(n)={my(v=vector(n)); for(n=1, n, v[n] = 1 + polcoef(1/prod(k=1, n-1, 1 - v[k]*x^k + O(x^n)), n-1)); concat([1], v)} \\ Andrew Howroyd, Aug 26 2018

CROSSREFS

Cf. A000081, A003238, A004111, A032305, A055277, A093637, A127524, A196545, A289501, A290689, A300443, A301342-A301345, A301364-A301368, A301422, A301467, A301469, A301470.

Sequence in context: A261061 A086628 A032096 * A120763 A120708 A327009

Adjacent sequences:  A301459 A301460 A301461 * A301463 A301464 A301465

KEYWORD

nonn

AUTHOR

Gus Wiseman, Mar 21 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 22 20:00 EDT 2022. Contains 353957 sequences. (Running on oeis4.)