login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A301459
Number of 6-cycles in the n-folded cube graph.
1
0, 0, 96, 320, 3200, 4480, 14336, 43008, 122880, 337920, 901120, 2342912, 5963776, 14909440, 36700160, 89128960, 213909504, 508035072, 1195376640, 2789212160, 6459228160, 14856224768, 33957085184
OFFSET
2,3
COMMENTS
a(5) is also the number of 6-cycles in the 2-Keller graph.
LINKS
Eric Weisstein's World of Mathematics, Folded Cube Graph
Eric Weisstein's World of Mathematics, Graph Cycle
Eric Weisstein's World of Mathematics, Keller Graph
FORMULA
a(n) = 2^(n - 1)*n*(n - 1)*(n - 2)/3 for n > 6.
a(n) = 8*a(n-1) - 24*a(n-2) + 32*a(n-3) - 16*a(n-4) for n > 10.
G.f.: 32*x^4*(3 - 14*x + 92*x^2 - 516*x^3 + 1456*x^4 - 1920*x^5 + 960*x^6)/(-1 + 2*x)^4.
MATHEMATICA
Table[Piecewise[{{0, n == 3}, {96, n == 4}, {3200, n == 6}}, 2^(n - 1) n (n - 1) (n - 2)/3], {n, 2, 20}]
Join[{0, 0, 96, 320, 3200}, LinearRecurrence[{8, -24, 32, -16}, {4480, 14336, 43008, 122880, 337920}, 14]]
CoefficientList[Series[32 x^2 (3 - 14 x + 92 x^2 - 516 x^3 + 1456 x^4 - 1920 x^5 + 960 x^6)/(-1 + 2 x)^4, {x, 0, 20}], x]
CROSSREFS
Cf. A052482 (4-cycles).
Sequence in context: A320883 A048189 A304830 * A220540 A292345 A084048
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, Mar 21 2018
STATUS
approved