login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320883
3-smooth numbers of the form (ab+1)(ac+1), a > b > c > 0.
5
96, 288, 3888, 4608, 31104, 69984, 2654208, 2985984, 4478976, 1088391168, 1528823808, 440301256704
OFFSET
1,1
COMMENTS
Subsequence of A320884 = 5-smooth terms of A180045, finite according to Corvaja & Zannier.
Can someone prove that a(12) = 440301256704 = (2359*889 + 1)(2359*89 + 1) = 2^26 * 3^8 is the last term?
LINKS
P. Corvaja and U. Zannier, On the greatest prime factor of (ab+1)(ac+1), Proceedings of the American Mathematical Society 131 (2003), pp. 1705-1709. See also arXiv:math/0205136 [math.NT], 2002.
FORMULA
Intersection of A180045 = {(ab+1)(ac+1); a > b > c > 0} and A003586 (3-smooth numbers).
MATHEMATICA
(* This is only a recomputation of the existing sequence. *)
(* Max exponents: *) jmax = 26; kmax = 12;
r[j_, k_] := Reduce[a > b > c > 0 && (a b + 1)(a c + 1) == 2^j*3^k , {a, b, c}, Integers];
Reap[Do[rr = r[j, k]; If[rr =!= False, Print[{j, k, 2^j*3^k}]; Sow[2^j*3^k]], {j, 1, jmax}, {k, 1, kmax}]][[2, 1]] // Union (* Jean-François Alcover, Dec 05 2018 *)
PROG
(PARI) A320883(LIM=35, S=[])={for(m=1, LIM, for(k=0, m, is_A180045(3^k<<(m-k))&& S=setunion(S, [3^k<<(m-k)]))); S} \\ Gives all terms up to 2^LIM and possibly some larger terms up to 3^LIM.
is_A320883(n)={vecmax(factor(n, 3)[, 1])<4 && is_A180045(n)}
CROSSREFS
Cf. A180045 = {(ab+1)(ac+1); a > b > c > 0}, A320884 (5-smooth terms of A180045), A003586 (3-smooth numbers).
Sequence in context: A202591 A202584 A062027 * A048189 A304830 A301459
KEYWORD
nonn,fini
AUTHOR
M. F. Hasler, Nov 19 2018
STATUS
approved