login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320884
5-smooth numbers of the form (ab+1)(ac+1), a > b > c > 0.
5
45, 96, 120, 225, 288, 540, 640, 1080, 1200, 1920, 2160, 3888, 4000, 4500, 4608, 5760, 6480, 7200, 8640, 9600, 10935, 16875, 18225, 25000, 25600, 27000, 28800, 30720, 31104, 38400, 46080, 48600, 69984, 75000, 81000, 91125, 97200, 102400, 112500, 115200, 164025, 184320
OFFSET
1,1
COMMENTS
Corvaja & Zannier show that there are only finitely many p-smooth terms in A180045, for any prime p. This sequences lists these terms for p = 5, and is therefore finite.
Can someone prove that a(163) = 3327916660110655488000000000 = (16775191*16038089 + 1)(16775191*737369 + 1) = 2^42 * 3^18 * 5^9 is the last term? - M. F. Hasler, Nov 19 2018
If a(164) exists it's larger than 10^60. - David A. Corneth, Nov 20 2018
LINKS
M. F. Hasler, Table of n, a(n) for n = 1..163 (all terms up to 10^30, and up to 10^60 according to David A. Corneth)
P. Corvaja and U. Zannier, On the greatest prime factor of (ab+1)(ac+1), Proceedings of the American Mathematical Society 131 (2003), pp. 1705-1709. See also arXiv:math/0205136 [math.NT], 2002.
FORMULA
Intersection of A051037 and A180045.
MATHEMATICA
(* This is only a recomputation of the existing data section. *)
jmax = 12; kmax = 8; lmax = 5; max = 200000;
r[j_, k_, l_] := r[j, k, l] = If[2^j*3^k*5^l > max, Return[False], Reduce[a > b > c > 0 && (a b + 1)(a c + 1) == 2^j*3^k*5^l, {a, b, c}, Integers]];
rea = Reap[Do[rr = r[j, k, l]; If[rr =!= False, res = {j, k, l, 2^j*3^k*5^l}; Print[res]; Sow[res]], {j, 0, jmax}, {k, 0, kmax}, {l, 0, lmax}]][[2, 1]] //Union;
Print["min = ", Min /@ Transpose[rea], " max = ", Max /@ Transpose[rea]];
Sort[rea[[All, 4]]] (* Jean-François Alcover, Dec 05 2018 *)
PROG
(PARI) is_A320884(n)={vecmax(factor(n, 5)[, 1])<6 && is_A180045(n)}
A320884=select( is_A180045, A051037_list(1e30))
CROSSREFS
Cf. A180045 (numbers (ab+1)(ac+1), a>b>c), A320883 (subsequence of 3-smooth terms), A051037 (5-smooth numbers).
Sequence in context: A121925 A044183 A044564 * A324460 A118090 A350422
KEYWORD
nonn,fini
AUTHOR
M. F. Hasler, Nov 19 2018
STATUS
approved