login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A320882
Primes p such that repeated application of A062028 (add sum of digits) yields two other primes in a row: p, A062028(p) and A062028(A062028(p)) are all prime.
1
11, 59, 101, 149, 167, 257, 277, 293, 367, 419, 479, 547, 617, 727, 839, 1409, 1559, 1579, 1847, 2039, 2129, 2617, 2657, 2837, 3449, 3517, 3539, 3607, 3719, 4217, 4637, 4877, 5689, 5779, 5807, 5861, 6037, 6257, 6761, 7027, 7489, 7517, 8039, 8741, 8969, 9371, 9377, 10667, 10847, 10937, 11257, 11279, 11299, 11657
OFFSET
1,1
COMMENTS
"Iterates" the idea of A048519 (p and A062028(p) are prime), also considered in A048523, A048524, A048525, A048526, A048527. (This is the union of A048524, A048525, A048526, A048527 etc. A048525(1) = 277 = a(7).)
LINKS
MAPLE
f:= n -> n + convert(convert(n, base, 10), `+`):
filter:= proc(n) local x;
if not isprime(n) then return false fi;
x:= f(n);
isprime(x) and isprime(f(x))
end proc:
select(filter, [seq(i, i=3..10000, 2)]); # Robert Israel, Dec 17 2020
PROG
(PARI) is_A320882(n, p=n)=isprime(p=A062028(p))&&isprime(A062028(p))&&isprime(n) \\ Putting isprime(n) to the end is more efficient for the frequent case when the terms are already known to be prime.
forprime(p=1, 14999, isprime(q=A062028(p))&&isprime(A062028(q))&&print1(p", "))
CROSSREFS
Subsequence of A048519: p and A062028(p) are prime.
Cf. A047791, A048520, A006378, A107740, A243441 (p and p + Hammingweight(p) are prime), A243442 (analog for p - Hammingweight(p)).
Cf. A048523, ..., A048527, A320878, A320879, A320880: primes starting a chain of length 2, ..., 9 under iterations of A062028(n) = n + digit sum of n.
Sequence in context: A214151 A273618 A168539 * A048524 A186312 A142401
KEYWORD
nonn,base
AUTHOR
M. F. Hasler, Nov 06 2018
STATUS
approved