|
|
A048519
|
|
Prime plus its digit sum equals a prime.
|
|
29
|
|
|
11, 13, 19, 37, 53, 59, 71, 73, 97, 101, 103, 127, 149, 163, 167, 181, 233, 257, 271, 277, 293, 307, 367, 383, 389, 419, 431, 433, 479, 499, 509, 547, 563, 587, 617, 631, 701, 727, 743, 787, 811, 839, 857, 859, 947, 1009, 1049, 1061, 1087, 1153, 1171
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
For any prime p, p +- digitsum(p, base b) can't be prime unless the base b is even, since in an odd base, an odd number always has an odd digit sum (powers of b are congruent to b (mod 2)), so p +- digitsum(p, base b) is even for odd b. This sequence is for b = 10 (where "-" is also excluded, see comment in A243442), see A243441 for b = 2. - M. F. Hasler, Nov 06 2018
|
|
LINKS
|
|
|
FORMULA
|
|
|
EXAMPLE
|
a(9) = prime 97 because 97 + sum-of-digits(97) = 97 + 16 = 113 also a prime.
|
|
MAPLE
|
P:=proc(n) local i, j, k, w; for i from 1 by 1 to n do w:=0; k:=ithprime(i); j:=k; while k>0 do w:=w+k-(trunc(k/10)*10); k:=trunc(k/10); od; if isprime(j+w) then print(j); fi; od; end: P(1000); # Paolo P. Lava, Mar 02 2009
# Alternate:
select(n -> isprime(n) and isprime(n + convert(convert(n, base, 10), `+`)), [$1..10^4]); # Robert Israel, Aug 10 2014
|
|
MATHEMATICA
|
Select[Prime[Range[500]], PrimeQ[#+Total[IntegerDigits[#]]]&] (* Harvey P. Dale, Oct 03 2011 *)
|
|
PROG
|
(PARI) select( is(p)=isprime(p+sumdigits(p))&&isprime(p), primes([0, 2000])) \\ M. F. Hasler, Aug 08 2014, edited Nov 09 2018
(Haskell)
a048519 n = a048519_list !! (n-1)
a048519_list = map a000040 $ filter ((== 1) . a010051' . a065073) [1..]
(Magma) [p: p in PrimesUpTo(1200) | IsPrime(q) where q is p+&+Intseq(p)]; // Vincenzo Librandi, Jan 30 2018
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|