login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320886
Number of multiset partitions of integer partitions of n where all parts have the same product.
3
1, 1, 3, 5, 10, 14, 25, 33, 54, 73, 107, 140, 207, 264, 369, 479, 652, 828, 1112, 1400, 1848, 2326, 3009, 3762, 4856, 6020, 7648, 9478, 11942, 14705, 18427, 22576, 28083, 34350, 42429, 51714, 63680, 77289, 94618, 114648, 139773, 168799, 205144, 247128, 299310, 359958, 434443, 521255, 627812, 751665, 902862
OFFSET
0,3
EXAMPLE
The a(1) = 1 through a(6) = 25 multiset partitions:
(1) (2) (3) (4) (5) (6)
(11) (12) (13) (14) (15)
(1)(1) (111) (22) (23) (24)
(1)(11) (112) (113) (33)
(1)(1)(1) (1111) (122) (114)
(2)(2) (1112) (123)
(1)(111) (11111) (222)
(11)(11) (2)(12) (1113)
(1)(1)(11) (1)(1111) (1122)
(1)(1)(1)(1) (11)(111) (3)(3)
(1)(1)(111) (11112)
(1)(11)(11) (111111)
(1)(1)(1)(11) (12)(12)
(1)(1)(1)(1)(1) (2)(112)
(2)(2)(2)
(1)(11111)
(11)(1111)
(111)(111)
(1)(1)(1111)
(1)(11)(111)
(11)(11)(11)
(1)(1)(1)(111)
(1)(1)(11)(11)
(1)(1)(1)(1)(11)
(1)(1)(1)(1)(1)(1)
MATHEMATICA
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
Table[Length[Select[Join@@mps/@IntegerPartitions[n], SameQ@@Times@@@#&]], {n, 8}]
PROG
(PARI)
G(n)={my(M=Map()); for(k=1, n, forpart(p=k, my(t=vecprod(Vec(p)), z); mapput(M, t, if(mapisdefined(M, t, &z), z, 0) + x^k))); M}
a(n)=if(n==0, 1, vecsum(apply(p->EulerT(Vecrev(p/x, n))[n], Mat(G(n))[, 2]))) \\ Andrew Howroyd, Oct 26 2018
KEYWORD
nonn
AUTHOR
Gus Wiseman, Oct 23 2018
EXTENSIONS
a(13)-a(50) from Andrew Howroyd, Oct 26 2018
STATUS
approved