OFFSET
0,3
EXAMPLE
The a(1) = 1 through a(6) = 25 multiset partitions:
(1) (2) (3) (4) (5) (6)
(11) (12) (13) (14) (15)
(1)(1) (111) (22) (23) (24)
(1)(11) (112) (113) (33)
(1)(1)(1) (1111) (122) (114)
(2)(2) (1112) (123)
(1)(111) (11111) (222)
(11)(11) (2)(12) (1113)
(1)(1)(11) (1)(1111) (1122)
(1)(1)(1)(1) (11)(111) (3)(3)
(1)(1)(111) (11112)
(1)(11)(11) (111111)
(1)(1)(1)(11) (12)(12)
(1)(1)(1)(1)(1) (2)(112)
(2)(2)(2)
(1)(11111)
(11)(1111)
(111)(111)
(1)(1)(1111)
(1)(11)(111)
(11)(11)(11)
(1)(1)(1)(111)
(1)(1)(11)(11)
(1)(1)(1)(1)(11)
(1)(1)(1)(1)(1)(1)
MATHEMATICA
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
Table[Length[Select[Join@@mps/@IntegerPartitions[n], SameQ@@Times@@@#&]], {n, 8}]
PROG
(PARI)
G(n)={my(M=Map()); for(k=1, n, forpart(p=k, my(t=vecprod(Vec(p)), z); mapput(M, t, if(mapisdefined(M, t, &z), z, 0) + x^k))); M}
a(n)=if(n==0, 1, vecsum(apply(p->EulerT(Vecrev(p/x, n))[n], Mat(G(n))[, 2]))) \\ Andrew Howroyd, Oct 26 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Oct 23 2018
EXTENSIONS
a(13)-a(50) from Andrew Howroyd, Oct 26 2018
STATUS
approved