login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320888
Number of set multipartitions (multisets of sets) of factorizations of n into factors > 1 such that all the parts have the same product.
3
1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 4, 1, 3, 1, 3, 2, 2, 1, 5, 2, 2, 3, 3, 1, 5, 1, 4, 2, 2, 2, 8, 1, 2, 2, 5, 1, 5, 1, 3, 3, 2, 1, 7, 2, 3, 2, 3, 1, 5, 2, 5, 2, 2, 1, 9, 1, 2, 3, 9, 2, 5, 1, 3, 2, 5, 1, 9, 1, 2, 3, 3, 2, 5, 1, 7, 4, 2, 1, 9, 2, 2, 2
OFFSET
1,4
FORMULA
a(n) = Sum_{d|A052409(n)} binomial(A045778(n^(1/d)) + d - 1, d).
EXAMPLE
The a(144) = 20 set multipartitions:
(2*3*4*6) (2*8*9) (2*72) (144)
(2*6)*(2*6) (3*6*8) (3*48)
(2*6)*(3*4) (2*3*24) (4*36)
(3*4)*(3*4) (2*4*18) (6*24)
(2*6*12) (8*18)
(3*4*12) (9*16)
(12)*(2*6) (12)*(12)
(12)*(3*4)
MATHEMATICA
strfacs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[strfacs[n/d], Min@@#>d&]], {d, Rest[Divisors[n]]}]];
Table[With[{g=GCD@@FactorInteger[n][[All, 2]]}, Sum[Binomial[Length[strfacs[n^(1/d)]]+d-1, d], {d, Divisors[g]}]], {n, 100}]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Oct 23 2018
STATUS
approved