login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of set multipartitions (multisets of sets) of factorizations of n into factors > 1 such that all the parts have the same product.
3

%I #5 Oct 23 2018 20:59:23

%S 1,1,1,2,1,2,1,3,2,2,1,3,1,2,2,4,1,3,1,3,2,2,1,5,2,2,3,3,1,5,1,4,2,2,

%T 2,8,1,2,2,5,1,5,1,3,3,2,1,7,2,3,2,3,1,5,2,5,2,2,1,9,1,2,3,9,2,5,1,3,

%U 2,5,1,9,1,2,3,3,2,5,1,7,4,2,1,9,2,2,2

%N Number of set multipartitions (multisets of sets) of factorizations of n into factors > 1 such that all the parts have the same product.

%F a(n) = Sum_{d|A052409(n)} binomial(A045778(n^(1/d)) + d - 1, d).

%e The a(144) = 20 set multipartitions:

%e (2*3*4*6) (2*8*9) (2*72) (144)

%e (2*6)*(2*6) (3*6*8) (3*48)

%e (2*6)*(3*4) (2*3*24) (4*36)

%e (3*4)*(3*4) (2*4*18) (6*24)

%e (2*6*12) (8*18)

%e (3*4*12) (9*16)

%e (12)*(2*6) (12)*(12)

%e (12)*(3*4)

%t strfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strfacs[n/d],Min@@#>d&]],{d,Rest[Divisors[n]]}]];

%t Table[With[{g=GCD@@FactorInteger[n][[All,2]]},Sum[Binomial[Length[strfacs[n^(1/d)]]+d-1,d],{d,Divisors[g]}]],{n,100}]

%Y Cf. A001055, A001970, A045778, A050336, A052409, A089259, A294786, A296132, A319269, A320886, A320887, A320889.

%K nonn

%O 1,4

%A _Gus Wiseman_, Oct 23 2018