login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320890
a(1) = 11. For all subsequent terms a(n), take a(n-1) and substitute for the k-th digit the binary number of times that digit has appeared in a(n-1), reading left to right from the 1st to k-th digit.
2
11, 110, 1101, 110111, 110111100101, 11011110010111010111111001000, 1101111001011101011111100100010011010101101111011001101111011111000010001111100010010100110101011
OFFSET
1,1
COMMENTS
Each term is an initial segment of all of its successors.
There are always more 1's than 0's in a term.
The proportion of 0's or 1's in the n-th term approaches 1/2 as n approaches infinity.
Starting with any binary integer apart from 0 or 1 and applying the same process to yield a sequence s(n), we have that, for a sufficiently large x, a(n) is always an initial segment of s(n+x). The constancy and uniqueness of the limiting behavior of initial segments in base 2 is unique among all bases, unless the tally system is considered as a degenerate case.
LINKS
EXAMPLE
a(1) = 11
The first 1 is replaced with 1, and the second 1 is replaced with 10 (two), so a(2) = 110 (1|10)
The first 1 is replaced with 1, the second 1 with 10, and the first 0 with 1, so a(3) = 1101 (1|10|1)
The first 1 is replaced with 1, the second 1 with 10, the first 0 with 1, and the third 1 with 11 (three), so a(4) = 110111 (1|10|1|11)
The first 1 is replaced with 1, the second 1 with 10, the first 0 with 1, the third 1 with 11, the fourth 1 with 100, and the fifth 1 with 101, so a(5) = 110111100101 (1|10|1|11|100|101)
The first 1 is replaced with 1, the second 1 with 10, the first 0 with 1, the third 1 with 11, the fourth 1 with 100, the fifth 1 with 101, the sixth 1 with 110, the second 0 with 10, the third 0 with 11, the seventh 1 with 111, the fourth 0 with 100, and the eighth 1 with 1000, so a(6) = 11011110010111010111111001000 (1|10|1|11|100|101|110|10|11|111|100|1000)
MATHEMATICA
FromDigits /@ Nest[Append[#, Flatten[IntegerDigits[#, 2] & /@ Table[Count[#, Last@ #] &@ #[[1 ;; k]], {k, Length@ #}]] &[#[[-1]] ] ] &, {{1, 1}}, 6] (* Michael De Vlieger, Oct 23 2018 *)
PROG
(PARI) eva(n) = subst(Pol(n), x, 10)
replace(v) = my(w=[], zeros=0, ones=0); for(k=1, #v, if(v[k]==0, zeros++; w=concat(w, binary(zeros))); if(v[k]==1, ones++; w=concat(w, binary(ones)))); w
terms(n) = my(v=[1, 1], i=0); while(i < n, print1(eva(v), ", "); i++; v=replace(v))
/* Print initial 7 terms as follows: */
terms(7) \\ Felix Fröhlich, Oct 23 2018
(Python)
A320890_list = [11]
while len(A320890_list)<10:
a0, a1, s = 0, 0, ''
for d in str(A320890_list[-1]):
if d == '0':
a0 += 1
s += bin(a0)[2:]
else:
a1 += 1
s += bin(a1)[2:]
A320890_list.append(int(s)) # Chai Wah Wu, Nov 30 2018
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Thomas Anton, Oct 23 2018
STATUS
approved