login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320893
Numbers with an even number of prime factors (counted with multiplicity) that can be factored into squarefree semiprimes (A320911) but cannot be factored into distinct semiprimes (A320892).
24
1296, 7776, 10000, 12960, 18144, 19440, 21600, 27216, 28512, 33696, 36000, 38416, 42336, 42768, 44064, 46656, 48600, 49248, 50544, 50625, 59616, 60000, 66096, 73872, 75168, 77760, 80352, 89424, 95256, 95904, 98784, 100000
OFFSET
1,1
COMMENTS
A semiprime (A001358) is a product of any two not necessarily distinct primes.
MATHEMATICA
sqfsemfacs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[sqfsemfacs[n/d], Min@@#>=d&]], {d, Select[Rest[Divisors[n]], And[SquareFreeQ[#], PrimeOmega[#]==2]&]}]];
strsemfacs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[strsemfacs[n/d], Min@@#>d&]], {d, Select[Rest[Divisors[n]], PrimeOmega[#]==2&]}]];
Select[Range[10000], And[EvenQ[PrimeOmega[#]], strsemfacs[#]=={}, sqfsemfacs[#]!={}]&]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Oct 23 2018
STATUS
approved