login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A378768
Squares of powerful numbers that are not prime powers.
2
1296, 5184, 10000, 11664, 20736, 38416, 40000, 46656, 50625, 82944, 104976, 153664, 160000, 186624, 194481, 234256, 250000, 331776, 419904, 455625, 456976, 614656, 640000, 746496, 810000, 937024, 944784, 1000000, 1185921, 1265625, 1327104, 1336336, 1500625, 1679616
OFFSET
1,1
COMMENTS
Contained in A286708, which is a proper subset of A126706.
LINKS
FORMULA
a(n) = A286708(n)^2.
Intersection of A000290 and A286708.
Intersection of A000290 and A372695.
Sum_{n>=1} 1/a(n) = zeta(4)*zeta(6)/zeta(12) - Sum_{p prime} (1/(p^4-p^2)) - 1 = 0.0013772572536044025109... . - Amiram Eldar, Dec 10 2024
MATHEMATICA
With[{nn = 2000}, Select[Rest@ Union[Flatten@ Table[a^2*b^3, {b, Surd[nn, 3]}, {a, Sqrt[nn/b^3]}] ], Not@*PrimePowerQ]^2]
PROG
(Python)
from math import isqrt
from sympy import integer_nthroot, primepi, mobius
def A378768(n):
def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def f(x):
c, l = n+x, 0
j = isqrt(x)
while j>1:
k2 = integer_nthroot(x//j**2, 3)[0]+1
w = squarefreepi(k2-1)
c -= j*(w-l)
l, j = w, isqrt(x//k2**3)
c -= squarefreepi(integer_nthroot(x, 3)[0])-l
return c+1+sum(primepi(integer_nthroot(x, k)[0]) for k in range(2, x.bit_length()))
return bisection(f, n, n)**2 # Chai Wah Wu, Dec 08 2024
KEYWORD
nonn,easy
AUTHOR
Michael De Vlieger, Dec 06 2024
STATUS
approved