OFFSET
1,1
COMMENTS
Numbers k such that rad(k)^3 | k and omega(k) > 1. In other words, numbers with at least 2 distinct prime factors whose prime power factors have exponents that exceed 2.
Superset of A372841.
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..10000
FORMULA
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + 1/(p^2*(p-1))) - Sum_{p prime} 1/(p^2*(p-1)) - 1 = A065483 - A152441 - 1 = 0.0188749045... . - Amiram Eldar, May 17 2024
EXAMPLE
Table of smallest 12 terms and instances of omega(a(n)) = m for m = 2..4
n a(n)
------------------------
1 216 = 2^3 * 3^3
2 432 = 2^4 * 3^3
3 648 = 2^3 * 3^4
4 864 = 2^5 * 3^3
5 1000 = 2^3 * 5^3
6 1296 = 2^4 * 3^4
7 1728 = 2^6 * 3^3
8 1944 = 2^3 * 3^5
9 2000 = 2^4 * 5^3
10 2592 = 2^5 * 3^4
11 2744 = 2^3 * 7^3
12 3375 = 3^3 * 5^3
...
43 27000 = 2^3 * 3^3 * 5^3
...
587 9261000 = 2^3 * 3^3 * 5^3 * 7^3
MATHEMATICA
nn = 25000; Rest@ Select[Union@ Flatten@ Table[a^5 * b^4 * c^3, {c, Surd[nn, 3]}, {b, Surd[nn/(c^3), 4]}, {a, Surd[nn/(b^4 * c^3), 5]}], Not@*PrimePowerQ]
PROG
(Python)
from math import gcd
from sympy import primepi, integer_nthroot, factorint
def A372695(n):
def f(x):
c = n+1+x+sum(primepi(integer_nthroot(x, k)[0]) for k in range(3, x.bit_length()))
for w in range(1, integer_nthroot(x, 5)[0]+1):
if all(d<=1 for d in factorint(w).values()):
for y in range(1, integer_nthroot(z:=x//w**5, 4)[0]+1):
if gcd(w, y)==1 and all(d<=1 for d in factorint(y).values()):
c -= integer_nthroot(z//y**4, 3)[0]
return c
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
return bisection(f, n, n) # Chai Wah Wu, Sep 12 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael De Vlieger, May 14 2024
STATUS
approved