login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A376936
Powerful numbers divisible by cubes of 2 distinct primes.
10
216, 432, 648, 864, 1000, 1296, 1728, 1944, 2000, 2592, 2744, 3375, 3456, 3888, 4000, 5000, 5184, 5400, 5488, 5832, 6912, 7776, 8000, 9000, 9261, 10000, 10125, 10368, 10584, 10648, 10800, 10976, 11664, 13500, 13824, 15552, 16000, 16200, 16875, 17496, 17576, 18000
OFFSET
1,1
COMMENTS
Numbers m with coreful divisors d, m/d such that neither d | m/d nor m/d | d, i.e., numbers m such that there exists a divisor pair (d, m/d) such that rad(d) = rad(m/d) but gcd(d, m/d) > 1 is neither d nor m/d, where rad = A007947. Divisors in each pair must be dissimilar and each in A126706.
Proper subset of A320966.
Contains A372695, A177493, and A162142. Does not contain A085986.
LINKS
Michael De Vlieger, Notes on this sequence
FORMULA
Sum_{n>=1} 1/a(n) = zeta(2)*zeta(3)/zeta(6) - (15/Pi^2) * (1 + Sum_{prime} 1/((p-1)*(p^2+1))) = 0.021194288968234037106579437374641326044... . - Amiram Eldar, Nov 08 2024
EXAMPLE
216 is in the sequence since rad(12) | rad(18), but 12 does not divide 18 and 18 does not divide 12.
432 is a term since rad(18) | rad(24), but 18 does not divide 24 and 24 does not divide 18.
Table of coreful divisors d, a(n)/d such that neither d | a(n)/d nor a(n)/d | d for select a(n)
n | a(n) divisor pairs d X a(n)/d
---------------------------------------------------------------------------
1 | 216: 12 X 18;
2 | 432: 18 X 24;
3 | 648: 12 X 54;
4 | 864: 24 X 36, 18 X 48;
5 | 1000: 20 X 50;
6 | 1296: 24 X 54;
7 | 1728: 18 X 96, 36 X 48;
8 | 1944: 12 X 162, 36 X 54;
9 | 2000: 40 X 50;
10 | 2592: 24 X 108, 48 X 54;
11 | 2744: 28 X 98;
12 | 3375: 45 X 75;
13 | 3456: 18 X 192, 36 X 96, 48 X 72;
22 | 7776: 24 X 324, 48 X 162, 54 X 144, 72 X 108;
58 | 31104: 48 X 648, 54 X 576, 96 X 324, 108 X 288, 144 X 216, 162 X 192
MATHEMATICA
Union@ Select[
Flatten@ Table[a^2*b^3, {b, Surd[#, 3]}, {a, Sqrt[#/b^3]}] &[20000],
Length@ Select[FactorInteger[#][[All, -1]], # > 2 &] >= 2 &]
KEYWORD
nonn,easy
AUTHOR
Michael De Vlieger, Oct 16 2024
STATUS
approved