OFFSET
1,1
COMMENTS
Numbers k such that rad(k)^4 | k and omega(k) > 1. In other words, numbers with at least 2 distinct prime factors whose prime power factors have exponents that exceed 3.
Smallest term k with omega(k) = m is k = A002110(m)^4.
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..10000
FORMULA
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + 1/(p^3*(p-1))) - Sum_{p prime} 1/(p^3*(p-1)) - 1 = 0.0026996042121456100761... . - Amiram Eldar, May 17 2024
EXAMPLE
Table of smallest 12 terms:
n a(n)
-----------------------
1 1296 = 2^4 * 3^4
2 2592 = 2^5 * 3^4
3 3888 = 2^4 * 3^5
4 5184 = 2^6 * 3^4
5 7776 = 2^5 * 3^5
6 10000 = 2^4 * 5^4
7 10368 = 2^7 * 3^4
8 11664 = 2^4 * 3^6
9 15552 = 2^6 * 3^5
10 20000 = 2^5 * 5^4
11 20736 = 2^8 * 3^4
12 23328 = 2^5 * 3^6
MATHEMATICA
With[{nn = 200000}, Rest@ Select[Union@ Flatten@ Table[a^7 * b^6 * c^5 * d^4, {d, Surd[nn, 4]}, {c, Surd[nn/(d^4), 5]}, {b, Surd[nn/(c^5 * d^4), 6]}, {a, Surd[nn/(b^6 * c^5 * d^4), 7]}], Not@*PrimePowerQ]]
PROG
(Python)
from math import gcd
from sympy import primepi, integer_nthroot, factorint
def A372841(n):
def f(x):
c = n+x+1+sum(primepi(integer_nthroot(x, k)[0]) for k in range(4, x.bit_length()))
for u in range(1, integer_nthroot(x, 7)[0]+1):
if all(d<=1 for d in factorint(u).values()):
for w in range(1, integer_nthroot(a:=x//u**7, 6)[0]+1):
if gcd(w, u)==1 and all(d<=1 for d in factorint(w).values()):
for y in range(1, integer_nthroot(z:=a//w**6, 5)[0]+1):
if gcd(w, y)==1 and gcd(u, y)==1 and all(d<=1 for d in factorint(y).values()):
c -= integer_nthroot(z//y**5, 4)[0]
return c
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
return bisection(f, n, n) # Chai Wah Wu, Sep 10 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael De Vlieger, May 14 2024
STATUS
approved