login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A372844
a(n) is the number of parking functions of order n for which the fourth spot is lucky.
5
64, 708, 9421, 148992, 2742090, 57671104, 1365730231, 35980443648, 1044117402868, 33098695234560, 1138160856018369, 42200676331159552, 1678427133899138494, 71282668099352051712, 3219814814790580711915, 154137012617228775849984, 7795444201708762192584744, 415337944634097426474729472
OFFSET
4,1
COMMENTS
A lucky spot is one which is parked in by a car which prefers that spot.
LINKS
Steve Butler, Kimberly Hadaway, Victoria Lenius, Preston Martens, and Marshall Moats, Lucky cars and lucky spots in parking functions, arXiv:2412.07873 [math.CO], 2024. See p. 10.
FORMULA
a(n) = (5/8)*(n+1)^(n-1) - (1/8)*(13*n^2 - 26*n + 9)*(n-3)^(n-3).
EXAMPLE
For clarity, we write parentheses around parking functions. For n = 4, there are a(4) = 64 solutions. An example of a parking function of order 4 with a lucky fourth spot is (1,4,2,2); here, the second car parks in the fourth spot which is its preferred spot. This parking function contributes to our count. A non-example is the parking function (1,2,1,2); here, the last car parks in the fourth spot, but its preference is spot 2. This parking function does not contribute to our count.
MATHEMATICA
a[n_]:=(5/8)*(n+1)^(n-1)-(1/8)*(13*n^2-26*n+9)*(n-3)^(n-3); Array[a, 19, 4] (* Stefano Spezia, Jun 26 2024 *)
PROG
(Python)
def A372844(n): return 5*(n+1)**(n-1)-(13*(n-1)**2-4)*(n-3)**(n-3)>>3 # Chai Wah Wu, Jun 26 2024
CROSSREFS
Cf. A000272 (for first spot), A372842 (for second spot), A372843 (for third spot), and A372845 (for fifth spot).
Sequence in context: A318023 A320408 A223963 * A303726 A305229 A304774
KEYWORD
nonn
AUTHOR
Kimberly P. Hadaway, Jun 26 2024
STATUS
approved