login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A223963
Number of 3 X n 0..3 arrays with antidiagonals unimodal and rows and diagonals nondecreasing.
1
64, 707, 3471, 12311, 36028, 92734, 217144, 471994, 965172, 1874532, 3482781, 6225291, 10754192, 18022648, 29393806, 46779538, 72814768, 111073890, 166336539, 244910775, 355022580, 507281450, 715232788, 996008770, 1371090364
OFFSET
1,1
COMMENTS
Row 3 of A223961.
LINKS
FORMULA
Empirical: a(n) = (1/8640)*n^9 + (1/320)*n^8 + (503/10080)*n^7 + (659/1440)*n^6 + (3013/960)*n^5 + (37141/2880)*n^4 + (106019/2160)*n^3 - (18977/720)*n^2 + (2711/70)*n - 6 for n>2.
Conjectures from Colin Barker, Aug 24 2018: (Start)
G.f.: x*(64 + 67*x - 719*x^2 + 1736*x^3 - 2287*x^4 + 2271*x^5 - 2070*x^6 + 1632*x^7 - 910*x^8 + 311*x^9 - 58*x^10 + 5*x^11) / (1 - x)^10.
a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10) for n>12.
(End)
EXAMPLE
Some solutions for n=3:
..0..0..1....2..2..2....0..0..2....0..0..2....0..2..3....0..1..3....1..2..2
..1..1..1....1..2..2....0..2..3....1..1..1....0..1..3....1..2..3....0..1..3
..0..1..3....1..1..3....3..3..3....1..1..2....0..0..2....1..1..3....0..0..2
CROSSREFS
Cf. A223961.
Sequence in context: A119287 A318023 A320408 * A372844 A303726 A305229
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 29 2013
STATUS
approved