login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of 3 X n 0..3 arrays with antidiagonals unimodal and rows and diagonals nondecreasing.
1

%I #7 Aug 24 2018 17:04:54

%S 64,707,3471,12311,36028,92734,217144,471994,965172,1874532,3482781,

%T 6225291,10754192,18022648,29393806,46779538,72814768,111073890,

%U 166336539,244910775,355022580,507281450,715232788,996008770,1371090364

%N Number of 3 X n 0..3 arrays with antidiagonals unimodal and rows and diagonals nondecreasing.

%C Row 3 of A223961.

%H R. H. Hardin, <a href="/A223963/b223963.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = (1/8640)*n^9 + (1/320)*n^8 + (503/10080)*n^7 + (659/1440)*n^6 + (3013/960)*n^5 + (37141/2880)*n^4 + (106019/2160)*n^3 - (18977/720)*n^2 + (2711/70)*n - 6 for n>2.

%F Conjectures from _Colin Barker_, Aug 24 2018: (Start)

%F G.f.: x*(64 + 67*x - 719*x^2 + 1736*x^3 - 2287*x^4 + 2271*x^5 - 2070*x^6 + 1632*x^7 - 910*x^8 + 311*x^9 - 58*x^10 + 5*x^11) / (1 - x)^10.

%F a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10) for n>12.

%F (End)

%e Some solutions for n=3:

%e ..0..0..1....2..2..2....0..0..2....0..0..2....0..2..3....0..1..3....1..2..2

%e ..1..1..1....1..2..2....0..2..3....1..1..1....0..1..3....1..2..3....0..1..3

%e ..0..1..3....1..1..3....3..3..3....1..1..2....0..0..2....1..1..3....0..0..2

%Y Cf. A223961.

%K nonn

%O 1,1

%A _R. H. Hardin_, Mar 29 2013