login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A305229 Number of nX7 0..1 arrays with every element unequal to 0, 1, 2, 3 or 8 king-move adjacent elements, with upper left element zero. 1
64, 719, 509, 1248, 5958, 26528, 135183, 656194, 3279365, 16250652, 81031953, 403509236, 2011945563, 10030039280, 50016127121, 249410319660, 1243788731837, 6202713557772, 30933122777137, 154265006485596, 769330468164179 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Column 7 of A305230.

LINKS

R. H. Hardin, Table of n, a(n) for n = 1..210

FORMULA

Empirical: a(n) = 8*a(n-1) -8*a(n-2) -58*a(n-3) +109*a(n-4) +53*a(n-5) -164*a(n-6) +350*a(n-7) -839*a(n-8) -337*a(n-9) +2217*a(n-10) -1688*a(n-11) +1782*a(n-12) -123*a(n-13) -7364*a(n-14) +8415*a(n-15) -422*a(n-16) -4654*a(n-17) +8939*a(n-18) -8494*a(n-19) -1367*a(n-20) +5630*a(n-21) -3708*a(n-22) +2283*a(n-23) +562*a(n-24) -1497*a(n-25) +288*a(n-26) +112*a(n-27) -24*a(n-28) for n>35

EXAMPLE

Some solutions for n=5

..0..1..1..1..1..1..1. .0..1..1..1..1..1..1. .0..0..0..0..0..1..1

..1..1..1..1..0..1..1. .1..1..1..0..1..0..1. .0..1..0..0..0..1..1

..1..1..1..1..1..1..1. .1..1..1..1..1..1..1. .0..0..0..0..0..1..1

..1..1..1..1..1..1..1. .0..1..1..0..1..1..1. .0..0..0..0..0..1..1

..0..1..1..1..1..1..0. .0..0..1..1..1..1..0. .0..0..0..0..0..1..1

CROSSREFS

Cf. A305230.

Sequence in context: A320408 A223963 A303726 * A304774 A316517 A304471

Adjacent sequences:  A305226 A305227 A305228 * A305230 A305231 A305232

KEYWORD

nonn

AUTHOR

R. H. Hardin, May 27 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 2 20:53 EDT 2022. Contains 357230 sequences. (Running on oeis4.)