login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A305231
Numbers that are the product of some integer and its digit reversal.
4
0, 1, 4, 9, 10, 16, 25, 36, 40, 49, 64, 81, 90, 100, 121, 160, 250, 252, 360, 400, 403, 484, 490, 574, 640, 736, 765, 810, 900, 976, 1000, 1008, 1089, 1207, 1210, 1300, 1458, 1462, 1600, 1612, 1729, 1855, 1936, 1944, 2268, 2296, 2430, 2500, 2520, 2668, 2701
OFFSET
1,3
COMMENTS
Terms of A061205, sorted in increasing order, with duplicates removed.
LINKS
Jon E. Schoenfield, Table of n, a(n) for n = 1..10000 (first 1000 terms from Alois P. Heinz)
EXAMPLE
12*21 = 252, so 252 is a term.
156*651 = 101556, so 101556 is a term. (It can also be written as 273*372; see A203924.)
MAPLE
a:= proc(n) option remember; local k, d; for k from 1+a(n-1) do
for d in numtheory[divisors](k) do if k = d*(s-> parse(cat(
seq(s[-i], i=1..length(s)))))(""||d) then return k fi od od
end: a(1):=0:
seq(a(n), n=1..60); # Alois P. Heinz, May 27 2018
MATHEMATICA
a={0}; h=-1; For[k=0, k<=2701, k++, For[m=1, m<=DivisorSigma[0, k], m++, d=Divisors[k]; If[k/Part[d, m] == FromDigits[Reverse[IntegerDigits[Part[d, m]]]] && k>h , AppendTo[a, k]; h=k]]]; a (* Stefano Spezia, Jan 28 2023 *)
PROG
(PARI) isok(n) = if (n==0, return (1), fordiv(n, d, if (n/d == fromdigits(Vecrev(digits(d))), return (1))); return (0)); \\ Michel Marcus, May 28 2018
CROSSREFS
Cf. A325148 (squares), A359981 (nonsquares).
Sequence in context: A337816 A272266 A155566 * A312832 A236652 A236748
KEYWORD
nonn,base
AUTHOR
Jon E. Schoenfield, May 27 2018
STATUS
approved