login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers that are the product of some integer and its digit reversal.
4

%I #20 Jan 28 2023 12:01:45

%S 0,1,4,9,10,16,25,36,40,49,64,81,90,100,121,160,250,252,360,400,403,

%T 484,490,574,640,736,765,810,900,976,1000,1008,1089,1207,1210,1300,

%U 1458,1462,1600,1612,1729,1855,1936,1944,2268,2296,2430,2500,2520,2668,2701

%N Numbers that are the product of some integer and its digit reversal.

%C Terms of A061205, sorted in increasing order, with duplicates removed.

%H Jon E. Schoenfield, <a href="/A305231/b305231.txt">Table of n, a(n) for n = 1..10000</a> (first 1000 terms from Alois P. Heinz)

%e 12*21 = 252, so 252 is a term.

%e 156*651 = 101556, so 101556 is a term. (It can also be written as 273*372; see A203924.)

%p a:= proc(n) option remember; local k, d; for k from 1+a(n-1) do

%p for d in numtheory[divisors](k) do if k = d*(s-> parse(cat(

%p seq(s[-i], i=1..length(s)))))(""||d) then return k fi od od

%p end: a(1):=0:

%p seq(a(n), n=1..60); # _Alois P. Heinz_, May 27 2018

%t a={0}; h=-1; For[k=0, k<=2701, k++, For[m=1, m<=DivisorSigma[0, k], m++, d=Divisors[k]; If[k/Part[d, m] == FromDigits[Reverse[IntegerDigits[Part[d, m]]]] && k>h , AppendTo[a, k]; h=k]]]; a (* _Stefano Spezia_, Jan 28 2023 *)

%o (PARI) isok(n) = if (n==0, return (1), fordiv(n, d, if (n/d == fromdigits(Vecrev(digits(d))), return (1))); return (0)); \\ _Michel Marcus_, May 28 2018

%Y Cf. A061205, A203924.

%Y Cf. A325148 (squares), A359981 (nonsquares).

%K nonn,base

%O 1,3

%A _Jon E. Schoenfield_, May 27 2018