login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A223508
Petersen graph (3,1) coloring a rectangular array: number of 5Xn 0..5 arrays where 0..5 label nodes of a graph with edges 0,1 0,3 3,5 3,4 1,2 1,4 4,5 2,0 2,5 and every array movement to a horizontal, diagonal or antidiagonal neighbor moves along an edge of this graph, with the array starting at 0
1
1296, 4913, 266419, 11148439, 515473927, 23328902821, 1065016901935, 48530437419865, 2213179954647275, 100913208621796747, 4601629002961862345, 209830596880154645775, 9568174653385280051091, 436303604544116583704607
OFFSET
1,1
COMMENTS
Row 5 of A223504
LINKS
FORMULA
Empirical: a(n) = 71*a(n-1) -1025*a(n-2) -14582*a(n-3) +432132*a(n-4) -1235038*a(n-5) -44254492*a(n-6) +375953458*a(n-7) +1077097488*a(n-8) -24108628735*a(n-9) +43813966193*a(n-10) +660782580981*a(n-11) -3015474264116*a(n-12) -7468946258468*a(n-13) +72313665742943*a(n-14) -19748204982172*a(n-15) -929976166077118*a(n-16) +1623691507031261*a(n-17) +6877758733216211*a(n-18) -21986547259066956*a(n-19) -25977258135841984*a(n-20) +164780020970184872*a(n-21) -5445523483934936*a(n-22) -789421436773000211*a(n-23) +617827785709579554*a(n-24) +2499061275173634960*a(n-25) -3608966242372275158*a(n-26) -5054385737333805739*a(n-27) +11913328661514326768*a(n-28) +5266973549905528132*a(n-29) -26083920461220425468*a(n-30) +2323512355364237888*a(n-31) +39474091164345616200*a(n-32) -18570564930623297944*a(n-33) -41144392421727062733*a(n-34) +34192277387530560380*a(n-35) +27957670701203653789*a(n-36) -37366923751687843813*a(n-37) -9816688145756259804*a(n-38) +27153007122450867062*a(n-39) -1474941418773154672*a(n-40) -13352938311422813034*a(n-41) +3795826701250077433*a(n-42) +4315925800274009339*a(n-43) -2185410858126306921*a(n-44) -825385995637082366*a(n-45) +704751836109259081*a(n-46) +54959242071750150*a(n-47) -139309166655413192*a(n-48) +12738975912252902*a(n-49) +16584925179127396*a(n-50) -3592712328375964*a(n-51) -1071918437017524*a(n-52) +385473088083924*a(n-53) +24628625488560*a(n-54) -20197202519736*a(n-55) +763271541072*a(n-56) +473574597408*a(n-57) -42448453056*a(n-58) -3476245248*a(n-59) +407586816*a(n-60) for n>61
EXAMPLE
Some solutions for n=3
..0..2..0....0..2..1....0..1..0....0..1..2....0..2..1....0..1..0....0..1..0
..1..2..1....1..2..5....0..2..0....4..1..0....0..2..0....2..1..4....0..3..4
..1..2..1....0..2..1....1..2..5....2..1..2....0..2..1....2..1..2....4..3..5
..1..2..0....5..2..5....5..2..5....4..5..4....0..2..0....2..5..4....0..3..0
..5..2..1....5..2..5....5..3..5....3..5..4....5..2..0....4..5..4....0..3..4
CROSSREFS
Sequence in context: A043372 A372841 A217908 * A250810 A378900 A378768
KEYWORD
nonn
AUTHOR
R. H. Hardin Mar 21 2013
STATUS
approved