login
A223505
Petersen graph (3,1) coloring a rectangular array: number of 2 X n 0..5 arrays where 0..5 label nodes of a graph with edges 0,1 0,3 3,5 3,4 1,2 1,4 4,5 2,0 2,5 and every array movement to a horizontal, diagonal or antidiagonal neighbor moves along an edge of this graph, with the array starting at 0.
1
6, 19, 115, 631, 3539, 19759, 110427, 617015, 3447747, 19265087, 107648363, 601511175, 3361088979, 18780896143, 104942791931, 586393188311, 3276613524707, 18308869209055, 102305227390859, 571655159691687
OFFSET
1,1
COMMENTS
Row 2 of A223504.
LINKS
FORMULA
Empirical: a(n) = 5*a(n-1) + 4*a(n-2) - 4*a(n-3) for n>4.
Empirical g.f.: x*(2 - x)*(1 - 2*x)*(3 + 2*x) / (1 - 5*x - 4*x^2 + 4*x^3). - Colin Barker, Aug 21 2018
EXAMPLE
Some solutions for n=3:
..0..1..0....0..3..0....0..2..0....0..2..1....0..2..1....0..1..4....0..1..0
..0..1..4....5..3..5....5..2..5....1..2..0....0..2..0....4..1..0....2..1..0
CROSSREFS
Cf. A223504.
Sequence in context: A285853 A138748 A097899 * A054236 A118411 A091876
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 21 2013
STATUS
approved