login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097899
Number of permutations of [n] with no runs of length 1. (The permutation 3574162 has two runs of length 1: 357/4/16/2).
3
1, 0, 1, 1, 6, 19, 109, 588, 4033, 29485, 246042, 2228203, 22162249, 237997032, 2757055393, 34191395785, 452480427678, 6360924613699, 94691284984405, 1487846074481172, 24608991911033377, 427379047337272213, 7775688853750498386, 147900024951747279643
OFFSET
0,5
REFERENCES
Ira. M. Gessel, Generating functions and enumeration of sequences, Ph. D. Thesis, MIT, 1977, p. 52.
LINKS
Paul Barry, On a transformation of Riordan moment sequences, arXiv:1802.03443 [math.CO], 2018.
FORMULA
a(n) = A000142(n) - A228614(n).
E.g.f.: (sqrt(3)/2)exp(-x/2)/cos(sqrt(3)x/2 + Pi/6).
E.g.f.: 1/(1-x^2/2!-x^3/3! +x^5/5! + x^6/6! - x^8/8! -x^9/9! + ... ) - Ira M. Gessel, Jul 27 2014
a(n) ~ n! * exp(-Pi*sqrt(3)/9) * (3*sqrt(3)/(2*Pi))^(n+1). - Vaclav Kotesovec, Oct 08 2013
G.f.: T(0), where T(k) = 1 - x^2*(k+1)^2/( x^2*(k+1)^2 - (1-x*(k+1))*(1-x*k)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Dec 03 2013
EXAMPLE
Example: a(4)=6 because 1234, 1324, 1423, 2314, 2413, 3412 are the only permutations of [4] with no runs of length 1.
MAPLE
G:=sqrt(3)*exp(-x/2)/2/cos(sqrt(3)*x/2+Pi/6): Gser:=series(G, x, 26): seq(n!*coeff(Gser, x, n), n=0..25);
MATHEMATICA
FullSimplify[CoefficientList[Series[(Sqrt[3]/2)*E^(-x/2)/Cos[Sqrt[3]*x/2 + Pi/6], {x, 0, 20}], x]* Range[0, 20]!] (* Vaclav Kotesovec, Oct 08 2013 *)
g[u_, o_] := g[u, o] = If[u + o < 2, u,
Sum[b[u - i, o + i - 1], {i, u}] +
Sum[g[u + i - 1, o - i], {i, o}]];
b[u_, o_] := b[u, o] = If[u + o < 2, 1 - o, u*(u + o - 1)! +
Sum[g[u + i - 1, o - i], {i, o}]] ;
a[n_] := n! - Sum[b[j - 1, n - j], {j, n}];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Aug 30 2021, after Alois P. Heinz in A228614 *)
CROSSREFS
Cf. A186735.
Sequence in context: A323686 A285853 A138748 * A223505 A054236 A118411
KEYWORD
nonn
AUTHOR
Emeric Deutsch and Ira M. Gessel, Sep 03 2004
STATUS
approved