login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A186735
Number of permutations of [n] with no ascending runs of length 1 or 2.
2
1, 0, 0, 1, 1, 1, 20, 69, 180, 1930, 12611, 61051, 566129, 5179750, 38348469, 376547340, 4169246332, 41559058969, 465750294781, 5905176350849, 72848728572828, 946103621115633, 13501160406995728, 195518567272213262, 2918439778172724571, 46559546190633191495
OFFSET
0,7
LINKS
FORMULA
a(n) = A000142(n) - A228614(n) - A185652(n).
EXAMPLE
a(0) = 1: the empty permutation.
a(3) = 1: 123.
a(4) = 1: 1234.
a(5) = 1: 12345.
a(6) = 20: 123456, 124356, 125346, 126345, 134256, 135246, 136245, 145236, 146235, 156234, 234156, 235146, 236145, 245136, 246135, 256134, 345126, 346125, 356124, 456123.
MATHEMATICA
A[n_, k_] := A[n, k] = Module[{b}, b[u_, o_, t_] := b[u, o, t] =
If[t + o <= k, (u + o)!,
Sum[b[u + i - 1, o - i, Min[k, t] + 1], {i, 1, o}] +
If[t <= k, u*(u + o - 1)!,
Sum[b[u - i, o + i - 1, 1], {i, 1, u}]]];
Sum[b[j - 1, n - j, 1], {j, 1, n}]];
a[n_] := n! - A[n, 2];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Sep 03 2021, after Alois P. Heinz in A064315 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 29 2013
STATUS
approved