login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of permutations of [n] with no ascending runs of length 1 or 2.
2

%I #18 Sep 03 2021 09:02:09

%S 1,0,0,1,1,1,20,69,180,1930,12611,61051,566129,5179750,38348469,

%T 376547340,4169246332,41559058969,465750294781,5905176350849,

%U 72848728572828,946103621115633,13501160406995728,195518567272213262,2918439778172724571,46559546190633191495

%N Number of permutations of [n] with no ascending runs of length 1 or 2.

%H Alois P. Heinz, <a href="/A186735/b186735.txt">Table of n, a(n) for n = 0..150</a>

%F a(n) = A000142(n) - A228614(n) - A185652(n).

%e a(0) = 1: the empty permutation.

%e a(3) = 1: 123.

%e a(4) = 1: 1234.

%e a(5) = 1: 12345.

%e a(6) = 20: 123456, 124356, 125346, 126345, 134256, 135246, 136245, 145236, 146235, 156234, 234156, 235146, 236145, 245136, 246135, 256134, 345126, 346125, 356124, 456123.

%t A[n_, k_] := A[n, k] = Module[{b}, b[u_, o_, t_] := b[u, o, t] =

%t If[t + o <= k, (u + o)!,

%t Sum[b[u + i - 1, o - i, Min[k, t] + 1], {i, 1, o}] +

%t If[t <= k, u*(u + o - 1)!,

%t Sum[b[u - i, o + i - 1, 1], {i, 1, u}]]];

%t Sum[b[j - 1, n - j, 1], {j, 1, n}]];

%t a[n_] := n! - A[n, 2];

%t Table[a[n], {n, 0, 25}] (* _Jean-François Alcover_, Sep 03 2021, after _Alois P. Heinz_ in A064315 *)

%Y Cf. A064315, A097899.

%Y Cf. A000142, A185652, A228614.

%K nonn

%O 0,7

%A _Alois P. Heinz_, Aug 29 2013