OFFSET
1,1
COMMENTS
Any (smooth, projective, geometrically irreducible) curve of genus 2 can be given by a Weierstrass equation of the form: y^2 + h(x)y = f(x), where h(x) and f(x) are polynomials satisfying deg(h) <= 3 and deg(f) <= 6.
LINKS
G. Cardona, On the number of curves of genus 2 over a finite field, Finite Fields Appl. 9 (2003), no.4, 505-526.
G. Cardona, E. Nart, and J. Pujolàs, Curves of genus two over fields of even characteristic, Math. Z. 250 (2005), no.1, 177-201.
E. Nart, Counting hyperelliptic curves, Adv. Math. 221 (2009), no.3, 774-787.
R. Steinberg, Enumerating Curves of Genus 2 Over Finite Fields, (2018). UVM Honors College Senior Theses. 259.
FORMULA
a(1) = 20, and for n > 1, a(n) = 2*prime(n)^3 + prime(n)^2 + 2*prime(n) - 2 + 2*[prime(n) == 1 (mod 3)] + 8*[prime(n) == 1 (mod 5)] + 2*[prime(n) == 5] + 2*[prime(n) == 1 or 3 (mod 8)].
EXAMPLE
For n = 1, the a(1) = 20 genus 2 curves over F_2 can be given by their Weierstrass models as: y^2 + y = x^5, y^2 + (x^2 + 1)y = x^5, y^2 + (x^3 + x^2 + 1)y = x^5, y^2 + (x^3 + x + 1)y = x^5, y^2 + (x^3 + x^2 + x + 1)y = x^5, y^2 + y = x^5 + x^4, y^2 + (x+1)y = x^5 + x^4, y^2 + (x^2 + x + 1)y = x^5 + x^4, y^2 + (x^3 + x^2 + 1)y = x^5 + x^4, y^2 + y = x^5 + x^4 + x^3, y^2 + (x^2 + x + 1)y = x^5 + x^4 + x^3, y^2 + xy = x^5 + x^4 + x, y^2 + (x^2)y = x^5 + x^4 + x, y^2 + (x^2 + x)y = x^5 + x^4 + x, y^2 + y = x^5 + x^4 + 1, y^2 + (x^2 + x + 1)y = x^5 + x^4 + 1, y^2 + (x^3 + x^2 + 1)y = x^5 + x^4 + 1, y^2 + y = x^5 + x^3 + 1, y^2 + (x^3 + x^2 + 1)y = x^5 + x^3 + 1, and y^2 + (x^3 + x^2 + 1)y = x^6 + x^5 + 1.
PROG
(Sage)
def a(n):
if n == 1: return 20
p = Primes()[n-1]
ans = 2*p^3 + p^2 + 2*p - 2
if p%3 == 1: ans += 2
if p%5 == 1: ans += 8
if p == 5: ans += 2
if p%8 in [1, 3]: ans += 2
return ans
CROSSREFS
KEYWORD
nonn
AUTHOR
Robin Visser, Jun 23 2023
STATUS
approved