login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097896
Number of compositions of n with either all parts odd or all parts even.
0
1, 2, 2, 5, 5, 12, 13, 29, 34, 71, 89, 176, 233, 441, 610, 1115, 1597, 2840, 4181, 7277, 10946, 18735, 28657, 48416, 75025, 125489, 196418, 326003, 514229, 848424, 1346269, 2211077, 3524578, 5768423, 9227465, 15061424, 24157817, 39350313
OFFSET
1,2
COMMENTS
Number of compositions of n with only even parts is 0 if n is odd, or 2^((n-2)/2) if n is even.
FORMULA
a(2*n-1) = Fibonacci(2*n-1), a(2*n) = 2^(n-1)+Fibonacci(2*n). - Vladeta Jovovic, Sep 05 2004
a(n)= +a(n-1) +3*a(n-2) -2*a(n-3) -2*a(n-4). G.f.: -x*(-1-x+x^3+3*x^2)/ ((2*x^2-1) * (x^2+x-1)). - R. J. Mathar, Feb 06 2010
EXAMPLE
For n=4: 1+1+1+1, 3+1, 1+3, 2+2, 4: total=5 so a(n)=5.
MATHEMATICA
f[n_] := Block[{}, Fibonacci[n] + If[EvenQ[n], 2^(n/2 - 1), 0]]; Table[ f[n], {n, 22}] (* Robert G. Wilson v, Sep 06 2004 *)
LinearRecurrence[{1, 3, -2, -2}, {1, 2, 2, 5}, 40] (* Harvey P. Dale, Nov 27 2012 *)
CROSSREFS
Sequence in context: A032580 A002014 A135153 * A030223 A300436 A056504
KEYWORD
nonn
AUTHOR
Dubois Marcel (dubois.ml(AT)club-internet.fr), Sep 03 2004
EXTENSIONS
More terms from Robert G. Wilson v, Sep 06 2004
STATUS
approved