OFFSET
0,5
COMMENTS
The binomial transform is 0, 0, 1, 4, 12, 32,... (n>=0), i.e. A135248 without one of the leading zeros. - R. J. Mathar, Jul 10 2019
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (0,2,0,1)
FORMULA
G.f.: x^2*(1+x)/(1-2*x^2-x^4). - Philippe Deléham, Feb 25 2014
a(n) = 2*a(n-2) + a(n-4), a(0) = a(1) = 0, a(2) = a(3) = 1. - Philippe Deléham, Feb 25 2014
MATHEMATICA
CoefficientList[Series[x^2 (1 + x)/(1 - 2 x^2 - x^4), {x, 0, 50}], x] (* Vincenzo Librandi, Mar 03 2014 *)
LinearRecurrence[{0, 2, 0, 1}, {0, 0, 1, 1}, 50] (* Harvey P. Dale, May 28 2023 *)
PROG
(Magma) I:=[0, 0, 1, 1]; [n le 4 select I[n] else 2*Self(n-2)+Self(n-4): n in [1..50]]; // Vincenzo Librandi, Mar 03 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Feb 14 2008
EXTENSIONS
Corrected and extended by Vincenzo Librandi, Mar 03 2014
STATUS
approved