login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A135248
a(n) = 4*a(n-1) - 4*a(n-2) + 2*a(n-4), with a(0)=a(1)=a(2)=0, and a(3)=1.
3
0, 0, 0, 1, 4, 12, 32, 82, 208, 528, 1344, 3428, 8752, 22352, 57088, 145800, 372352, 950912, 2428416, 6201616, 15837504, 40445376, 103288320, 263775008, 673621760, 1720277760, 4393200640, 11219241536, 28651407104, 73169217792, 186857644032, 477192188032
OFFSET
0,5
COMMENTS
The inverse binomial transform is {0, 0, 0, 1, 0, 2, 0, 5, 0, 12, 0, 29, ...} (n>=0), an aerated variant of A000129. - R. J. Mathar, Jul 10 2019
FORMULA
G.f.: x^3 / (1-4*x+4*x^2-2*x^4). - Colin Barker, Apr 08 2016
MAPLE
seq(coeff(series(x^3/(1-4*x+4*x^2-2*x^4), x, n+1), x, n), n = 0 ..35); # G. C. Greubel, Nov 21 2019
MATHEMATICA
LinearRecurrence[{4, -4, 0, 2}, {0, 0, 0, 1}, 35] (* G. C. Greubel, Oct 04 2016 *)
PROG
(PARI) concat(vector(3), Vec(x^3/(1-4*x+4*x^2-2*x^4) + O(x^35))) \\ Colin Barker, Apr 08 2016
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( x^3/(1-4*x+4*x^2-2*x^4) )); // G. C. Greubel, Nov 21 2019
(Sage)
def A135248_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P(x^3/(1-4*x+4*x^2-2*x^4)).list()
A135248_list(30) # G. C. Greubel, Nov 21 2019
(GAP) a:=[0, 0, 0, 1];; for n in [5..35] do a[n]:=4*a[n-1]-4*a[n-2]+ 2*a[n-4]; od; a; # G. C. Greubel, Nov 21 2019
CROSSREFS
Cf. A101893 (first differences).
Sequence in context: A097067 A038592 A048776 * A205976 A291038 A271898
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Feb 15 2008
STATUS
approved