OFFSET
0,2
COMMENTS
a(n) is the number of partitions of n into parts 1 (in three colors) and 2 (in two colors) where the order of colors matters. For example, the a(2)=11 such partitions (using parts 1, 1', 1'', 2, and 2') are 2, 2', 1+1, 1+1', 1+1'', 1'+1, 1'+1', 1'+1'', 1''+1, 1''+1', 1''+1''. For such partitions where the order of colors does not matter see A002624. - Joerg Arndt, Jan 18 2024
LINKS
Sean A. Irvine, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (3,2,-6).
FORMULA
G.f.: 1/((1-3*x)*(1-2*x^2)). - G. C. Greubel, Oct 04 2016
From Mathew Englander, Jan 08 2024: (Start)
a(n) = 3*a(n-1) + A077957(n) for n >= 1.
(End)
MAPLE
seq(coeff(series(1/(1-3*x-2*x^2+6*x^3), x, n+1), x, n), n = 0..30); # G. C. Greubel, Nov 20 2019
MATHEMATICA
LinearRecurrence[{3, 2, -6}, {1, 3, 11}, 30] (* Harvey P. Dale, Jun 27 2015 *)
PROG
(PARI) my(x='x+O('x^30)); Vec(1/(1-3*x-2*x^2+6*x^3)) \\ G. C. Greubel, Nov 20 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( 1/(1-3*x-2*x^2+6*x^3) )); // G. C. Greubel, Nov 20 2019
(Sage)
def A135247_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( 1/(1-3*x-2*x^2+6*x^3) ).list()
A135247_list(30) # G. C. Greubel, Nov 20 2019
(GAP) a:=[1, 3, 11];; for n in [4..30] do a[n]:=3*a[n-1]+2*a[n-2]-6*a[n-3]; od; a; # G. C. Greubel, Nov 20 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Feb 15 2008
EXTENSIONS
More terms from Harvey P. Dale, Jun 27 2015
Dropped two leading terms = 0. - Joerg Arndt, Jan 18 2024
STATUS
approved