Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Sep 08 2022 08:45:32
%S 0,0,0,1,4,12,32,82,208,528,1344,3428,8752,22352,57088,145800,372352,
%T 950912,2428416,6201616,15837504,40445376,103288320,263775008,
%U 673621760,1720277760,4393200640,11219241536,28651407104,73169217792,186857644032,477192188032
%N a(n) = 4*a(n-1) - 4*a(n-2) + 2*a(n-4), with a(0)=a(1)=a(2)=0, and a(3)=1.
%C The inverse binomial transform is {0, 0, 0, 1, 0, 2, 0, 5, 0, 12, 0, 29, ...} (n>=0), an aerated variant of A000129. - _R. J. Mathar_, Jul 10 2019
%H Colin Barker, <a href="/A135248/b135248.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-4,0,2).
%F G.f.: x^3 / (1-4*x+4*x^2-2*x^4). - _Colin Barker_, Apr 08 2016
%p seq(coeff(series(x^3/(1-4*x+4*x^2-2*x^4), x, n+1), x, n), n = 0 ..35); # _G. C. Greubel_, Nov 21 2019
%t LinearRecurrence[{4,-4,0,2}, {0,0,0,1}, 35] (* _G. C. Greubel_, Oct 04 2016 *)
%o (PARI) concat(vector(3), Vec(x^3/(1-4*x+4*x^2-2*x^4) + O(x^35))) \\ _Colin Barker_, Apr 08 2016
%o (Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( x^3/(1-4*x+4*x^2-2*x^4) )); // _G. C. Greubel_, Nov 21 2019
%o (Sage)
%o def A135248_list(prec):
%o P.<x> = PowerSeriesRing(ZZ, prec)
%o return P(x^3/(1-4*x+4*x^2-2*x^4)).list()
%o A135248_list(30) # _G. C. Greubel_, Nov 21 2019
%o (GAP) a:=[0,0,0,1];; for n in [5..35] do a[n]:=4*a[n-1]-4*a[n-2]+ 2*a[n-4]; od; a; # _G. C. Greubel_, Nov 21 2019
%Y Cf. A101893 (first differences).
%K nonn,easy
%O 0,5
%A _Paul Curtz_, Feb 15 2008