login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of compositions of n with either all parts odd or all parts even.
0

%I #12 Jul 27 2015 15:17:00

%S 1,2,2,5,5,12,13,29,34,71,89,176,233,441,610,1115,1597,2840,4181,7277,

%T 10946,18735,28657,48416,75025,125489,196418,326003,514229,848424,

%U 1346269,2211077,3524578,5768423,9227465,15061424,24157817,39350313

%N Number of compositions of n with either all parts odd or all parts even.

%C Number of compositions of n with only even parts is 0 if n is odd, or 2^((n-2)/2) if n is even.

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1, 3, -2, -2).

%F a(2*n-1) = Fibonacci(2*n-1), a(2*n) = 2^(n-1)+Fibonacci(2*n). - _Vladeta Jovovic_, Sep 05 2004

%F a(n)= +a(n-1) +3*a(n-2) -2*a(n-3) -2*a(n-4). G.f.: -x*(-1-x+x^3+3*x^2)/ ((2*x^2-1) * (x^2+x-1)). - _R. J. Mathar_, Feb 06 2010

%e For n=4: 1+1+1+1, 3+1, 1+3, 2+2, 4: total=5 so a(n)=5.

%t f[n_] := Block[{}, Fibonacci[n] + If[EvenQ[n], 2^(n/2 - 1), 0]]; Table[ f[n], {n, 22}] (* _Robert G. Wilson v_, Sep 06 2004 *)

%t LinearRecurrence[{1,3,-2,-2},{1,2,2,5},40] (* _Harvey P. Dale_, Nov 27 2012 *)

%Y Cf. A096441, A000045.

%K nonn

%O 1,2

%A Dubois Marcel (dubois.ml(AT)club-internet.fr), Sep 03 2004

%E More terms from _Robert G. Wilson v_, Sep 06 2004