login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of permutations of [n] with no runs of length 1. (The permutation 3574162 has two runs of length 1: 357/4/16/2).
3

%I #29 Aug 30 2021 03:10:52

%S 1,0,1,1,6,19,109,588,4033,29485,246042,2228203,22162249,237997032,

%T 2757055393,34191395785,452480427678,6360924613699,94691284984405,

%U 1487846074481172,24608991911033377,427379047337272213,7775688853750498386,147900024951747279643

%N Number of permutations of [n] with no runs of length 1. (The permutation 3574162 has two runs of length 1: 357/4/16/2).

%D Ira. M. Gessel, Generating functions and enumeration of sequences, Ph. D. Thesis, MIT, 1977, p. 52.

%H Alois P. Heinz, <a href="/A097899/b097899.txt">Table of n, a(n) for n = 0..200</a>

%H Paul Barry, <a href="https://arxiv.org/abs/1802.03443">On a transformation of Riordan moment sequences</a>, arXiv:1802.03443 [math.CO], 2018.

%F a(n) = A000142(n) - A228614(n).

%F E.g.f.: (sqrt(3)/2)exp(-x/2)/cos(sqrt(3)x/2 + Pi/6).

%F E.g.f.: 1/(1-x^2/2!-x^3/3! +x^5/5! + x^6/6! - x^8/8! -x^9/9! + ... ) - _Ira M. Gessel_, Jul 27 2014

%F a(n) ~ n! * exp(-Pi*sqrt(3)/9) * (3*sqrt(3)/(2*Pi))^(n+1). - _Vaclav Kotesovec_, Oct 08 2013

%F G.f.: T(0), where T(k) = 1 - x^2*(k+1)^2/( x^2*(k+1)^2 - (1-x*(k+1))*(1-x*k)/T(k+1) ); (continued fraction). - _Sergei N. Gladkovskii_, Dec 03 2013

%e Example: a(4)=6 because 1234, 1324, 1423, 2314, 2413, 3412 are the only permutations of [4] with no runs of length 1.

%p G:=sqrt(3)*exp(-x/2)/2/cos(sqrt(3)*x/2+Pi/6): Gser:=series(G, x, 26): seq(n!*coeff(Gser, x, n), n=0..25);

%t FullSimplify[CoefficientList[Series[(Sqrt[3]/2)*E^(-x/2)/Cos[Sqrt[3]*x/2 + Pi/6], {x, 0, 20}], x]* Range[0, 20]!] (* _Vaclav Kotesovec_, Oct 08 2013 *)

%t g[u_, o_] := g[u, o] = If[u + o < 2, u,

%t Sum[b[u - i, o + i - 1], {i, u}] +

%t Sum[g[u + i - 1, o - i], {i, o}]];

%t b[u_, o_] := b[u, o] = If[u + o < 2, 1 - o, u*(u + o - 1)! +

%t Sum[g[u + i - 1, o - i], {i, o}]] ;

%t a[n_] := n! - Sum[b[j - 1, n - j], {j, n}];

%t Table[a[n], {n, 0, 25}] (* _Jean-François Alcover_, Aug 30 2021, after _Alois P. Heinz_ in A228614 *)

%Y Cf. A186735.

%K nonn

%O 0,5

%A _Emeric Deutsch_ and _Ira M. Gessel_, Sep 03 2004