%I #20 Sep 13 2024 08:04:04
%S 216,432,648,864,1000,1296,1728,1944,2000,2592,2744,3375,3456,3888,
%T 4000,5000,5184,5488,5832,6912,7776,8000,9261,10000,10125,10368,10648,
%U 10976,11664,13824,15552,16000,16875,17496,17576,19208,20000,20736,21296,21952,23328,25000
%N Cubefull numbers that are not prime powers.
%C Numbers k such that rad(k)^3 | k and omega(k) > 1. In other words, numbers with at least 2 distinct prime factors whose prime power factors have exponents that exceed 2.
%C Proper subset of the following sequences: A001694, A036966, A126706, A286708.
%C Superset of A372841.
%C Smallest term k with omega(k) = m is k = A002110(m)^3 = A115964(m).
%H Michael De Vlieger, <a href="/A372695/b372695.txt">Table of n, a(n) for n = 1..10000</a>
%F Intersection of A036966 and A024619.
%F Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + 1/(p^2*(p-1))) - Sum_{p prime} 1/(p^2*(p-1)) - 1 = A065483 - A152441 - 1 = 0.0188749045... . - _Amiram Eldar_, May 17 2024
%e Table of smallest 12 terms and instances of omega(a(n)) = m for m = 2..4
%e n a(n)
%e ------------------------
%e 1 216 = 2^3 * 3^3
%e 2 432 = 2^4 * 3^3
%e 3 648 = 2^3 * 3^4
%e 4 864 = 2^5 * 3^3
%e 5 1000 = 2^3 * 5^3
%e 6 1296 = 2^4 * 3^4
%e 7 1728 = 2^6 * 3^3
%e 8 1944 = 2^3 * 3^5
%e 9 2000 = 2^4 * 5^3
%e 10 2592 = 2^5 * 3^4
%e 11 2744 = 2^3 * 7^3
%e 12 3375 = 3^3 * 5^3
%e ...
%e 43 27000 = 2^3 * 3^3 * 5^3
%e ...
%e 587 9261000 = 2^3 * 3^3 * 5^3 * 7^3
%t nn = 25000; Rest@ Select[Union@ Flatten@ Table[a^5 * b^4 * c^3, {c, Surd[nn, 3]}, {b, Surd[nn/(c^3), 4]}, {a, Surd[nn/(b^4 * c^3), 5]}], Not@*PrimePowerQ]
%o (Python)
%o from math import gcd
%o from sympy import primepi, integer_nthroot, factorint
%o def A372695(n):
%o def f(x):
%o c = n+1+x+sum(primepi(integer_nthroot(x, k)[0]) for k in range(3, x.bit_length()))
%o for w in range(1,integer_nthroot(x,5)[0]+1):
%o if all(d<=1 for d in factorint(w).values()):
%o for y in range(1,integer_nthroot(z:=x//w**5,4)[0]+1):
%o if gcd(w,y)==1 and all(d<=1 for d in factorint(y).values()):
%o c -= integer_nthroot(z//y**4,3)[0]
%o return c
%o def bisection(f,kmin=0,kmax=1):
%o while f(kmax) > kmax: kmax <<= 1
%o while kmax-kmin > 1:
%o kmid = kmax+kmin>>1
%o if f(kmid) <= kmid:
%o kmax = kmid
%o else:
%o kmin = kmid
%o return kmax
%o return bisection(f,n,n) # _Chai Wah Wu_, Sep 12 2024
%Y Cf. A001694, A007947, A024619, A036966, A115964, A126706, A286708, A372841.
%Y Cf. A065483, A152441.
%K nonn
%O 1,1
%A _Michael De Vlieger_, May 14 2024