OFFSET
1,1
COMMENTS
A conjecture over at A020666 says that A020666(n) = 2 for n >= 189. Perhaps looking at last digits and some modular arithmetic leads to a proof.
A020666(189) = 2 and a(189) = 33 so the last 33 digits of 2^189 contain all 10 digits. Therefore for k = 189 + 4*5^(33-1) the last 33 digits of 2^k contain all 10 possible digits.
LINKS
David A. Corneth, Table of n, a(n) for n = 1..10000
EXAMPLE
a(4) = 11 since m = A020666(4)^4 = 763^4 = 338920744561. The last 11 digits contain all 10 possible digits (0 through 9) but the last 10 digits do not; 3 is missing in the last 10 digits.
PROG
(PARI) a(n) = {
if(n == 1, return(10));
my(i, todo = 10, v = vector(10), d);
for(i = 2, oo,
d = digits(i^n);
if(#Set(d) == 10,
forstep(i = #d, 1, -1,
if(v[d[i]+1] == 0,
v[d[i]+1] = 1;
todo--;
if(todo == 0,
return(#d - i + 1))))));
}
CROSSREFS
KEYWORD
nonn,easy,base
AUTHOR
David A. Corneth, Dec 06 2024
STATUS
approved