The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A300443 Number of binary enriched p-trees of weight n. 11
 1, 1, 2, 3, 8, 15, 41, 96, 288, 724, 2142, 5838, 17720, 49871, 151846, 440915, 1363821, 4019460, 12460721, 37374098, 116809752, 353904962, 1109745666, 3396806188, 10712261952, 33006706419, 104357272687, 323794643722, 1027723460639, 3204413808420, 10193485256501 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS A binary enriched p-tree of weight n is either a single node of weight n, or an ordered pair of binary enriched p-trees with weakly decreasing weights summing to n. LINKS Alois P. Heinz, Table of n, a(n) for n = 0..1000 FORMULA a(n) = 1 + Sum_{x + y = n, 0 < x <= y < n} a(x) * a(y). EXAMPLE The a(4) = 8 binary enriched p-trees: 4, (31), (22), ((21)1), ((11)2), (2(11)), (((11)1)1), ((11)(11)). MAPLE a:= proc(n) option remember;       1+add(a(j)*a(n-j), j=1..n/2)     end: seq(a(n), n=0..40);  # Alois P. Heinz, Mar 06 2018 MATHEMATICA j[n_]:=j[n]=1+Sum[Times@@j/@y, {y, Select[IntegerPartitions[n], Length[#]===2&]}]; Array[j, 40] PROG (PARI) seq(n)={my(v=vector(n)); for(n=1, n, v[n] = 1 + sum(k=1, n\2, v[k]*v[n-k])); concat([1], v)} \\ Andrew Howroyd, Aug 26 2018 CROSSREFS Cf. A000992, A001190, A063834, A196545, A273873, A289501, A300354, A300439, A300442. Sequence in context: A148002 A148003 A148004 * A321231 A156802 A148005 Adjacent sequences:  A300440 A300441 A300442 * A300444 A300445 A300446 KEYWORD nonn AUTHOR Gus Wiseman, Mar 05 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 17 09:29 EDT 2021. Contains 343064 sequences. (Running on oeis4.)