login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A301364
Regular triangle where T(n,k) is the number of enriched p-trees of weight n with k leaves.
10
1, 1, 1, 1, 1, 2, 1, 2, 4, 5, 1, 2, 6, 11, 12, 1, 3, 10, 26, 38, 34, 1, 3, 13, 39, 87, 117, 92, 1, 4, 19, 69, 181, 339, 406, 277, 1, 4, 23, 95, 303, 707, 1198, 1311, 806, 1, 5, 30, 143, 514, 1430, 2970, 4525, 4522, 2500, 1, 5, 35, 184, 762, 2446, 6124, 11627
OFFSET
1,6
COMMENTS
An enriched p-tree of weight n > 0 is either a single node of weight n, or a finite sequence of two or more enriched p-trees with weakly decreasing weights summing to n.
LINKS
EXAMPLE
Triangle begins:
1
1 1
1 1 2
1 2 4 5
1 2 6 11 12
1 3 10 26 38 34
1 3 13 39 87 117 92
1 4 19 69 181 339 406 277
...
The T(5,4) = 11 enriched p-trees: (((21)1)1), ((2(11))1), (((11)2)1), ((211)1), ((21)(11)), (((11)1)2), ((111)2), ((21)11), (2(11)1), ((11)21), (2111).
MATHEMATICA
eptrees[n_]:=Prepend[Join@@Table[Tuples[eptrees/@ptn], {ptn, Select[IntegerPartitions[n], Length[#]>1&]}], n];
Table[Length[Select[eptrees[n], Count[#, _Integer, {-1}]===k&]], {n, 8}, {k, n}]
PROG
(PARI) A(n)={my(v=vector(n)); for(n=1, n, v[n] = y + polcoef(1/prod(k=1, n-1, 1 - v[k]*x^k + O(x*x^n)), n)); apply(p->Vecrev(p/y), v)}
{ my(T=A(10)); for(n=1, #T, print(T[n])) } \\ Andrew Howroyd, Aug 26 2018
CROSSREFS
Last entries of each row give A196545. Row sums are A289501.
Sequence in context: A256188 A072727 A292601 * A309503 A057061 A307729
KEYWORD
nonn,tabl
AUTHOR
Gus Wiseman, Mar 19 2018
STATUS
approved