login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A301366 Regular triangle where T(n,k) is the number of same-trees of weight n with k leaves. 1
1, 1, 1, 1, 0, 1, 1, 1, 2, 2, 1, 0, 0, 0, 1, 1, 1, 1, 5, 3, 3, 1, 0, 0, 0, 0, 0, 1, 1, 1, 2, 6, 12, 14, 12, 6, 1, 0, 1, 0, 3, 0, 3, 0, 2, 1, 1, 0, 0, 1, 7, 10, 10, 5, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 3, 7, 21, 41, 58, 100, 100, 94, 48, 20 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,9

COMMENTS

A same-tree of weight n > 0 is either a single node of weight n, or a finite sequence of two or more same-trees whose weights are all the same and sum to n.

LINKS

Andrew Howroyd, Table of n, a(n) for n = 1..1275 (rows 1..50)

EXAMPLE

Triangle begins:

1

1   1

1   0   1

1   1   2   2

1   0   0   0   1

1   1   1   5   3   3

1   0   0   0   0   0   1

1   1   2   6  12  14  12   6

1   0   1   0   3   0   3   0   2

1   1   0   0   1   7  10  10   5   3

1   0   0   0   0   0   0   0   0   0   1

1   1   3   7  21  41  58 100 100  94  48  20

The T(8,4) = 6 same-trees: (4(2(11))), (4((11)2)), ((22)(22)), ((2(11))4), (((11)2)4), (2222).

MATHEMATICA

sametrees[n_]:=Prepend[Join@@Table[Tuples[sametrees/@ptn], {ptn, Select[IntegerPartitions[n], Length[#]>1&&SameQ@@#&]}], n];

Table[Length[Select[sametrees[n], Count[#, _Integer, {-1}]===k&]], {n, 12}, {k, n}]

PROG

(PARI)

A(n)={my(v=vector(n)); for(n=1, n, v[n] = x + sumdiv(n, d, v[n/d]^d)); apply(p -> Vecrev(p/x), v)}

{my(v=A(16)); for(n=1, #v, print(v[n]))} \\ Andrew Howroyd, Aug 20 2018

CROSSREFS

Last entries of each row give A006241. Row sums are A281145.

Cf. A003238, A008284, A055277, A063834, A273873, A289501, A294080, A298422, A298426, A299201, A299203, A300442, A300443, A301343, A301364-A301368.

Sequence in context: A219494 A089069 A143535 * A250100 A016270 A219493

Adjacent sequences:  A301363 A301364 A301365 * A301367 A301368 A301369

KEYWORD

nonn,tabl

AUTHOR

Gus Wiseman, Mar 19 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 19 23:01 EDT 2019. Contains 324222 sequences. (Running on oeis4.)